\begin{tabular}{|l|l}\hline (b) Is the point \( (3,1) \) a solution to the inequality \( 4 x+y \geq 3 ? \) & O ves \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To check if the point \( (3,1) \) is a solution to the inequality \( 4x + y \geq 3 \), we need to substitute \( x = 3 \) and \( y = 1 \) into the inequality. Doing the math: \[ 4(3) + 1 = 12 + 1 = 13. \] Since \( 13 \geq 3 \) is true, the point \( (3,1) \) is indeed a solution to the inequality. In graphical terms, the inequality represents a half-plane above the line \( 4x + y = 3 \). Plotting the line and shading the correct area, you'll find that \( (3,1) \) comfortably lies within the permitted region. So, it’s a thumbs up for this point!
