Responder
Your monthly car payment will be approximately \$525.83.
Solución
To calculate the monthly payments for a car loan, we can use the formula for monthly payments on a loan:
\[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \]
Where:
- \( M \) is the monthly payment
- \( P \) is the principal amount (the loan amount)
- \( r \) is the monthly interest rate
- \( n \) is the number of payments (the number of months)
Given:
- Loan amount (\( P \)) = $30,000
- Interest rate = 2% per annum
- Loan duration = 5 years = 60 months
First, we need to convert the annual interest rate to a monthly interest rate:
\[ r = \frac{2\%}{12} = \frac{0.02}{12} = 0.0016667 \]
Now, we can substitute the values into the formula to calculate the monthly payment.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{30000\times 0.0016667\left(1+0.0016667\right)^{60}}{\left(\left(1+0.0016667\right)^{60}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{30000\times 0.0016667\left(1+0.0016667\right)^{60}}{\left(1+0.0016667\right)^{60}-1}\)
- step2: Add the numbers:
\(\frac{30000\times 0.0016667\times 1.0016667^{60}}{\left(1+0.0016667\right)^{60}-1}\)
- step3: Add the numbers:
\(\frac{30000\times 0.0016667\times 1.0016667^{60}}{1.0016667^{60}-1}\)
- step4: Convert the expressions:
\(\frac{30000\times 0.0016667\left(\frac{10016667}{10000000}\right)^{60}}{1.0016667^{60}-1}\)
- step5: Convert the expressions:
\(\frac{30000\times 0.0016667\left(\frac{10016667}{10000000}\right)^{60}}{\left(\frac{10016667}{10000000}\right)^{60}-1}\)
- step6: Multiply:
\(\frac{\frac{50001\times 10016667^{60}}{10^{423}}}{\left(\frac{10016667}{10000000}\right)^{60}-1}\)
- step7: Subtract the numbers:
\(\frac{\frac{50001\times 10016667^{60}}{10^{423}}}{\frac{10016667^{60}-10000000^{60}}{10000000^{60}}}\)
- step8: Multiply by the reciprocal:
\(\frac{50001\times 10016667^{60}}{10^{423}}\times \frac{10000000^{60}}{10016667^{60}-10000000^{60}}\)
- step9: Rewrite the expression:
\(\frac{50001\times 10016667^{60}}{10^{423}}\times \frac{10^{420}}{10016667^{60}-10000000^{60}}\)
- step10: Reduce the numbers:
\(\frac{50001\times 10016667^{60}}{10^{3}}\times \frac{1}{10016667^{60}-10000000^{60}}\)
- step11: Multiply the fractions:
\(\frac{50001\times 10016667^{60}}{10^{3}\left(10016667^{60}-10000000^{60}\right)}\)
- step12: Multiply:
\(\frac{50001\times 10016667^{60}}{1000\times 10016667^{60}-10^{423}}\)
The monthly payment for the car loan will be approximately $525.83.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución