Pregunta
upstudy study bank question image url

You want to buy a car. The loan amount will be \( \$ 30,000 \). The company is offering a \( 2 \% \) interest rate for 60 months ( 5 years). What will your monthly payments be? \( \$ \) Question Help: D Post to forum

Ask by Ortiz Mcdonald. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Your monthly car payment will be approximately \$525.83.

Solución

To calculate the monthly payments for a car loan, we can use the formula for monthly payments on a loan: \[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (the loan amount) - \( r \) is the monthly interest rate - \( n \) is the number of payments (the number of months) Given: - Loan amount (\( P \)) = $30,000 - Interest rate = 2% per annum - Loan duration = 5 years = 60 months First, we need to convert the annual interest rate to a monthly interest rate: \[ r = \frac{2\%}{12} = \frac{0.02}{12} = 0.0016667 \] Now, we can substitute the values into the formula to calculate the monthly payment. Calculate the value by following steps: - step0: Calculate: \(\frac{30000\times 0.0016667\left(1+0.0016667\right)^{60}}{\left(\left(1+0.0016667\right)^{60}-1\right)}\) - step1: Remove the parentheses: \(\frac{30000\times 0.0016667\left(1+0.0016667\right)^{60}}{\left(1+0.0016667\right)^{60}-1}\) - step2: Add the numbers: \(\frac{30000\times 0.0016667\times 1.0016667^{60}}{\left(1+0.0016667\right)^{60}-1}\) - step3: Add the numbers: \(\frac{30000\times 0.0016667\times 1.0016667^{60}}{1.0016667^{60}-1}\) - step4: Convert the expressions: \(\frac{30000\times 0.0016667\left(\frac{10016667}{10000000}\right)^{60}}{1.0016667^{60}-1}\) - step5: Convert the expressions: \(\frac{30000\times 0.0016667\left(\frac{10016667}{10000000}\right)^{60}}{\left(\frac{10016667}{10000000}\right)^{60}-1}\) - step6: Multiply: \(\frac{\frac{50001\times 10016667^{60}}{10^{423}}}{\left(\frac{10016667}{10000000}\right)^{60}-1}\) - step7: Subtract the numbers: \(\frac{\frac{50001\times 10016667^{60}}{10^{423}}}{\frac{10016667^{60}-10000000^{60}}{10000000^{60}}}\) - step8: Multiply by the reciprocal: \(\frac{50001\times 10016667^{60}}{10^{423}}\times \frac{10000000^{60}}{10016667^{60}-10000000^{60}}\) - step9: Rewrite the expression: \(\frac{50001\times 10016667^{60}}{10^{423}}\times \frac{10^{420}}{10016667^{60}-10000000^{60}}\) - step10: Reduce the numbers: \(\frac{50001\times 10016667^{60}}{10^{3}}\times \frac{1}{10016667^{60}-10000000^{60}}\) - step11: Multiply the fractions: \(\frac{50001\times 10016667^{60}}{10^{3}\left(10016667^{60}-10000000^{60}\right)}\) - step12: Multiply: \(\frac{50001\times 10016667^{60}}{1000\times 10016667^{60}-10^{423}}\) The monthly payment for the car loan will be approximately $525.83.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate your monthly payments for the loan, you can use the formula for a fixed-rate loan: \[ M = P \frac{r(1+r)^n}{(1+r)^n-1} \] Where: - \( M \) is the total monthly payment. - \( P \) is the loan amount (\$30,000). - \( r \) is the monthly interest rate (annual rate / 12 months = \( \frac{0.02}{12} \)). - \( n \) is the number of payments (60 months). Plugging these values in gives you a monthly payment of approximately **\$523.27**. This formula can be handy beyond just car loans too! You can use it for mortgages, student loans, or any other type of fixed-rate loan. Just remember to adjust the values according to the loan amount, interest rate, and loan term to easily figure out what your monthly payments will be. It’s a great skill to have when planning your finances!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad