Pregunta
upstudy study bank question image url

find the gradient of the line \( (-3,6),(6,1) \) using graph

Ask by Nichols Nguyen. in Nigeria
Jan 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The gradient of the line is \(-\frac{5}{9}\).

Solución

To find the **gradient** (also known as the **slope**) of the line passing through the points \((-3, 6)\) and \( (6, 1) \), you can use the following method: ### Step 1: Understand the Gradient Formula The gradient \( m \) of a line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] ### Step 2: Plug in the Given Points Given the points: - \((x_1, y_1) = (-3, 6)\) - \((x_2, y_2) = (6, 1)\) Substitute these values into the formula: \[ m = \frac{1 - 6}{6 - (-3)} = \frac{-5}{9} \] ### Step 3: Interpret the Result - **Gradient \( m = -\frac{5}{9} \)** This means that for every 9 units you move to the right (positive direction on the x-axis), the line descends by 5 units (negative direction on the y-axis). ### Visual Representation If you were to graph these points and draw the line between them: 1. **Plot the Points:** - Point A: \((-3, 6)\) - Point B: \( (6, 1) \) 2. **Draw the Line:** - Connect the two points with a straight line. 3. **Determine the Gradient:** - From Point A to Point B, move **9 units right** (from \(x = -3\) to \(x = 6\)). - Move **5 units down** (from \(y = 6\) to \(y = 1\)). The slope \( m = \frac{\text{Vertical Change}}{\text{Horizontal Change}} = \frac{-5}{9} \) confirms the gradient. ### Conclusion The **gradient of the line** passing through the points \((-3, 6)\) and \( (6, 1)\) is: \[ m = -\frac{5}{9} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the gradient (or slope) of the line connecting the points \((-3, 6)\) and \( (6, 1)\), you can use the formula: \[ \text{Gradient} (m) = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the given points, we have \(y_2 = 1\), \(y_1 = 6\), \(x_2 = 6\), and \(x_1 = -3\): \[ m = \frac{1 - 6}{6 - (-3)} = \frac{-5}{9} \] So the gradient of the line is \(-\frac{5}{9}\). This means for every 9 units you move to the right, the line moves down by 5 units, creating a gentle slope descending from left to right! The fun part is to visualize this on a graph! Plot the points \((-3, 6)\) and \((6, 1)\) on a coordinate plane, then draw a straight line through them. You can imagine how this line would look, cutting diagonally from the upper left to the lower right, indicating that as \(x\) increases, \(y\) decreases. Talk about a downward trend!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad