Pregunta
Solve the system of equations. \[ \begin{array}{r}x+5 y-z=24 \\ y+6 z=41 \\ z=6\end{array} \] Select the correct choice below and, if necessary, fill in the answer boxes to complete the choice. A. The solution of the given system is \( x=\square, y=\square \), and \( z=\square \). (Simplify your answers.) B. The system has infinitely many solutions. If \( z \) is any real number, then \( x=\square \) and \( y=\square \). (Type expressions using \( z \) as the variable.)
Ask by Dunn Hodgson. in the United States
Dec 11,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
A. The solution of the given system is \( x=5, y=5 \), and \( z=6 \).
Solución
To solve the system of equations, we start with the given equations:
1. \( x + 5y - z = 24 \)
2. \( y + 6z = 41 \)
3. \( z = 6 \)
First, we substitute \( z = 6 \) into the second equation:
\[
y + 6(6) = 41
\]
\[
y + 36 = 41
\]
\[
y = 41 - 36
\]
\[
y = 5
\]
Now that we have \( y = 5 \) and \( z = 6 \), we substitute these values into the first equation to find \( x \):
\[
x + 5(5) - 6 = 24
\]
\[
x + 25 - 6 = 24
\]
\[
x + 19 = 24
\]
\[
x = 24 - 19
\]
\[
x = 5
\]
Now we have the values for \( x \), \( y \), and \( z \):
\[
x = 5, \quad y = 5, \quad z = 6
\]
Thus, the solution of the given system is:
A. The solution of the given system is \( x=5, y=5 \), and \( z=6 \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
First, we will substitute \( z = 6 \) into the other two equations. Starting with the second equation: \[ y + 6z = 41 \] Substituting \( z = 6 \): \[ y + 6 \cdot 6 = 41 \\ y + 36 = 41 \\ y = 41 - 36 \\ y = 5 \] Now, we substitute \( y = 5 \) and \( z = 6 \) into the first equation: \[ x + 5y - z = 24 \\ x + 5 \cdot 5 - 6 = 24 \\ x + 25 - 6 = 24 \\ x + 19 = 24 \\ x = 24 - 19 \\ x = 5 \] Thus, we have \( x = 5 \), \( y = 5 \), and \( z = 6 \). A. The solution of the given system is \( x=5, y=5 \), and \( z=6 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium