Pregunta
upstudy study bank question image url

2:37 PM Wed Feb 19 16\% mylabschool.pearson.com ChatGP \( { }^{-} \) Max Headro... Encore: The... The Mystery... Enter Game... parallel lines... Geometry Period 11 Mckennah Person 02/19/25 2:37 PM This quiz: 23 point(s) \( \equiv \) Quiz: parallel lines chapter quiz Question 6 of 23 This question: 1 Submit quiz point(s) possible Question list Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10 Question 11 Find the slope of the line containing the pair of points. \( (5,-11) \) and \( (0,8) \) The slope of the line is \( \square \) . (Simplify your answer. Type an integer or a fraction.)

Ask by Wilson Reid. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope of the line is \( -\frac{19}{5} \).

Solución

To find the slope of the line containing the points \( (5, -11) \) and \( (0, 8) \), we can use the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] where \( (x_1, y_1) \) and \( (x_2, y_2) \) are the coordinates of the two points. 1. Identify the coordinates: - \( (x_1, y_1) = (5, -11) \) - \( (x_2, y_2) = (0, 8) \) 2. Substitute the values into the slope formula: \[ m = \frac{8 - (-11)}{0 - 5} \] 3. Simplify the expression: \[ m = \frac{8 + 11}{0 - 5} = \frac{19}{-5} \] 4. This simplifies to: \[ m = -\frac{19}{5} \] Thus, the slope of the line is \( -\frac{19}{5} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the line containing the points \( (5, -11) \) and \( (0, 8) \), you can use the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the coordinates, where \( (x_1, y_1) = (5, -11) \) and \( (x_2, y_2) = (0, 8) \): \[ m = \frac{8 - (-11)}{0 - 5} = \frac{8 + 11}{-5} = \frac{19}{-5} = -\frac{19}{5} \] Thus, the slope of the line is \( -\frac{19}{5} \). Understanding slopes can feel like a math mystery! Did you know that the concept of slope has roots back to ancient civilizations like the Greeks? They were the first to systematically study geometric shapes and their properties, laying the groundwork for algebra and calculus. This makes triangle and line equations not only essential in today’s geometry but also a nod to the brilliant minds of the past! In the real world, understanding slope is crucial in various fields, including engineering and architecture, where precise angles and gradients can make all the difference in construction. For example, when designing a ramp for accessibility, the slope must be gentle enough for wheelchair users. So, those pesky slope calculations ensure a smoother ride and align with safety standards.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad