Pregunta
upstudy study bank question image url

(1 point) A company has found that the relationship between the price and the demand for a particular product is given approximately by
The company also knows that the cost of producing the product is given by .
Find , the profit function.
Now use the profit function to do the following:
(A) Find the average of the values of all local maxima of .
Note: If there are no local maxima, enter -1000 .
Average of values
(B) Find the average of the values of all local minima of .
Note: If there are no local minima, enter -1000 .
Average of values =
(C) Use interval notation to indicate where is concave up.
Note: Enter 'I' for , '-l' for , and 'U' for the union symbol.
If you have extra boxes, fill each in with an ' '.
Concave up:
(D) Use interval notation to indicate where is concave down.
Concave down:
T:

Ask by Whittaker Adkins. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the profit function , subtract the cost from the revenue:
To find local maxima and minima, take the derivative of , set it to zero, and use the second derivative to classify the points. Then, calculate the averages of the values for maxima and minima, and determine the intervals where is concave up or down. However, without the specific function for , I cannot provide numerical answers.

Solución

To find the profit function , we need to use the relationship between price and demand , along with the cost function . The profit function is defined as:
where is the revenue function, which can be expressed as:

Step 1: Define the Revenue Function

Assuming the relationship between price and demand is given by a function (which is not provided in the prompt), we can express as:

Step 2: Define the Profit Function

Now, substituting and into the profit function:

Step 3: Find Local Maxima and Minima

To find the local maxima and minima of , we need to take the derivative and set it to zero:
Where . We will also need to find the second derivative to determine concavity.

Step 4: Solve for Local Maxima and Minima

  1. Set to find critical points.
  2. Use the second derivative test to classify these points as local maxima or minima.

Step 5: Calculate Averages and Intervals

  • For part (A), find the average of the values of all local maxima.
  • For part (B), find the average of the values of all local minima.
  • For part ©, determine the intervals where is concave up.
  • For part (D), determine the intervals where is concave down.
Since the specific function for is not provided, I cannot compute the exact values. If you provide the function , I can proceed with the calculations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the profit function , you first need to express it in terms of revenue and cost. The revenue function can be derived from the relationship between price and demand . Typically, . Given your cost function , we can state .
Now, when it comes to analyzing the profit function for local maxima and minima, it’s essential to remember that these are determined by the first derivative set to zero. Use the second derivative to confirm whether these points are maxima or minima. This way, you can easily find average values of for local maxima and minima!
Additionally, don’t forget to inspect the intervals where the second derivative indicates concavity. If , it’s concave up, and if , then it’s concave down! Keep those calculations neat, and you’ll have the answers in no time!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad