Pregunta
upstudy study bank question image url

18. Obesity Obesity is defined as a body mass index (BMI) of \( 3 \mathrm{~kg} / \mathrm{m}^{2} \) or more. A \( 95 \% \) confidence interval for the percentage of U.S. adults aged 20 years and over who were obese was found to be 22.4 to \( 23.5 \% \). What was the sample size?

Ask by Bernard Gough. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sample size needed is approximately 22,450.

Solución

To determine the sample size for the given 95% confidence interval for the obesity rate among U.S. adults, we'll use the formula for the confidence interval of a proportion: \[ CI = \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \] Where: - \(\hat{p}\) is the sample proportion. - \(z^*\) is the z-score corresponding to the confidence level (1.96 for 95% confidence). - \(n\) is the sample size. - \(CI\) is the confidence interval. **Step 1: Identify the Given Values** - **Confidence Interval**: 22.4% to 23.5% - **Confidence Level**: 95%, so \(z^* = 1.96\) **Step 2: Calculate the Sample Proportion (\(\hat{p}\)) and Margin of Error (E)** \[ \hat{p} = \frac{22.4\% + 23.5\%}{2} = 22.95\% \] \[ E = \frac{23.5\% - 22.4\%}{2} = 0.55\% \] **Step 3: Rearrange the Confidence Interval Formula to Solve for \(n\)** \[ E = z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \\ \Rightarrow n = \frac{z^{*2} \cdot \hat{p}(1 - \hat{p})}{E^2} \] **Step 4: Plug in the Values** \[ n = \frac{(1.96)^2 \cdot 0.2295 \cdot (1 - 0.2295)}{(0.0055)^2} \] \[ n = \frac{3.8416 \cdot 0.2295 \cdot 0.7705}{0.00003025} \\ n \approx \frac{0.6793}{0.00003025} \\ n \approx 22,457 \] **Step 5: Round to a Practical Sample Size** Given that sample sizes are typically rounded to whole numbers, especially in large surveys: \[ n \approx 22,450 \] **Conclusion:** The required sample size is approximately **22,450**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To estimate the sample size for the percentage of U.S. adults who were found to be obese, we'll use the formula for sample size in proportion estimation, which is given by: \[ n = \left(\frac{Z^2 \cdot p(1 - p)}{E^2}\right) \] Where: - \( Z \) is the z-score corresponding to the desired confidence level (for 95%, \( Z \approx 1.96 \)), - \( p \) is the estimated proportion (midpoint of the interval: \( \frac{22.4 + 23.5}{2} = 22.95\% = 0.2295 \)), - \( E \) is the margin of error (half the width of the confidence interval: \( \frac{23.5 - 22.4}{2} = 0.0555 \)). Plugging in the values: \[ n = \left(\frac{(1.96)^2 \cdot (0.2295)(1 - 0.2295)}{(0.0555)^2}\right) \approx \left(\frac{3.8416 \cdot (0.2295)(0.7705)}{0.00308025}\right) \approx 259.3 \] Rounding up, we can say the sample size was approximately \( n \approx 260 \). So, the answer is about **260**.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad