Pregunta
upstudy study bank question image url

Two dice are thrown. List all the possible results. Find the probability of throwing a total of 6 .

Ask by Frank Dickson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are 36 possible outcomes when two dice are thrown. The probability of getting a total of 6 is 5 out of 36.

Solución

When two dice are thrown, each die can land on any number from 1 to 6, resulting in 6 × 6 = 36 equally likely outcomes. These outcomes can be written as ordered pairs (a, b), where "a" is the number on the first die and "b" is the number on the second die. The complete list of outcomes is: (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) To find the probability of throwing a total of 6, we need to count the number of outcomes where the sum of the two dice equals 6. Let's list those favorable outcomes: • (1, 5) → 1 + 5 = 6 • (2, 4) → 2 + 4 = 6 • (3, 3) → 3 + 3 = 6 • (4, 2) → 4 + 2 = 6 • (5, 1) → 5 + 1 = 6 There are 5 outcomes that produce a total of 6. Since all 36 outcomes are equally likely, the probability P(total of 6) is given by:   P(total of 6) = Number of favorable outcomes / Total outcomes = 5/36 Thus, the probability of throwing a total of 6 with two dice is 5/36.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When two dice are thrown, each die has 6 faces, resulting in a total of 36 possible combinations. The complete list of possible results includes (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), and (6,6). For the total of 6, the combinations are (1,5), (2,4), (3,3), (4,2), and (5,1), giving us 5 successful outcomes. Therefore, the probability of throwing a total of 6 is the number of successful outcomes (5) divided by the total number of outcomes (36), resulting in a probability of \( \frac{5}{36} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad