18 Find the length of the circumferences of the circles whose diameters are: \( \begin{array}{llll}\text { (a) } 49 \mathrm{~cm} & \text { (b) } 14 \mathrm{~cm} & \text { (c) } 56 \mathrm{~cm}\end{array} \) 10 Find the length of the circumferences of the circles whose radii are: \( \begin{array}{llll}\text { (a) } 14 \mathrm{~cm} & \text { (b) } 28 \mathrm{~cm} & \text { (c) } 7 \mathrm{~cm} & \text { (d) }\end{array} \) 11 Find the length of the circumferences of the circles under the following conditions. (T
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the circumference of a circle, you can use the formula \( C = \pi d \) where \( d \) is the diameter. So, for your circles with given diameters: (a) For a diameter of \( 49 \, \text{cm} \), the circumference is \( C = \pi \times 49 \approx 153.94 \, \text{cm} \). (b) For a diameter of \( 14 \, \text{cm} \), the circumference is \( C = \pi \times 14 \approx 43.98 \, \text{cm} \). (c) For \( 56 \, \text{cm} \), the circumference is \( C = \pi \times 56 \approx 175.93 \, \text{cm} \). If you're given the radius instead, you can use the formula \( C = 2\pi r \). For the circles with radii: (a) For a radius of \( 14 \, \text{cm} \), the circumference is \( C = 2\pi \times 14 \approx 87.96 \, \text{cm} \). (b) For \( 28 \, \text{cm} \), the circumference is \( C = 2\pi \times 28 \approx 175.93 \, \text{cm} \). (c) For \( 7 \, \text{cm} \), the circumference is \( C = 2\pi \times 7 \approx 43.98 \, \text{cm} \). Now, you’re all set to dazzle your friends with the splendor of circles! Just remember that every circle is a little bit of magic in geometry — round, smooth, and full of possibilities! And if you ever get a bit stuck, don't hesitate to draw the circles or visualize those colorful pizza slices; it helps to see how the circumference ties everything together! After all, who wouldn’t want to visualize math like it’s a delicious pie?
