Pregunta
upstudy study bank question image url

6. a) If \( (2 x-10)^{\circ} \) and \( (3 x+20)^{\circ} \) are a linear pair, find them. b) A nair of complementary angles are in the ratio \( 2: 3 \), find them.

Ask by Page Stephens. in Nepal
Nov 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The angles are \( 58^\circ \) and \( 122^\circ \). b) The complementary angles are \( 36^\circ \) and \( 54^\circ \).

Solución

To solve the problems, let's break them down one by one. ### Part a If \( (2x - 10)^\circ \) and \( (3x + 20)^\circ \) are a linear pair, it means that they are supplementary angles. Therefore, their sum is \( 180^\circ \). We can set up the equation: \[ (2x - 10) + (3x + 20) = 180 \] Now, simplify the equation: \[ 2x - 10 + 3x + 20 = 180 \] \[ 5x + 10 = 180 \] Next, subtract 10 from both sides: \[ 5x = 170 \] Now, divide by 5: \[ x = 34 \] Now, we can find the measures of the angles: 1. For \( (2x - 10)^\circ \): \[ 2(34) - 10 = 68 - 10 = 58^\circ \] 2. For \( (3x + 20)^\circ \): \[ 3(34) + 20 = 102 + 20 = 122^\circ \] Thus, the angles are \( 58^\circ \) and \( 122^\circ \). ### Part b Let the two complementary angles be \( 2k \) and \( 3k \) (since they are in the ratio \( 2:3 \)). Since they are complementary, their sum is \( 90^\circ \). We can set up the equation: \[ 2k + 3k = 90 \] Simplifying gives: \[ 5k = 90 \] Now, divide by 5: \[ k = 18 \] Now we can find the measures of the angles: 1. For the first angle \( 2k \): \[ 2(18) = 36^\circ \] 2. For the second angle \( 3k \): \[ 3(18) = 54^\circ \] Thus, the two complementary angles are \( 36^\circ \) and \( 54^\circ \). ### Summary of Answers a) The angles are \( 58^\circ \) and \( 122^\circ \). b) The complementary angles are \( 36^\circ \) and \( 54^\circ \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve part (a), since \( (2x - 10)^{\circ} \) and \( (3x + 20)^{\circ} \) form a linear pair, they must sum to \( 180^{\circ} \). Thus, you can set up the equation: \[ (2x - 10) + (3x + 20) = 180 \] Simplifying this gives \( 5x + 10 = 180 \), leading to \( 5x = 170 \) or \( x = 34 \). Substituting \( x \) back into the angles gives \( (2(34) - 10)^{\circ} = 58^{\circ} \) and \( (3(34) + 20)^{\circ} = 102^{\circ} \). For part (b), if two complementary angles are in the ratio \( 2:3 \), you can express the angles as \( 2x \) and \( 3x \). Since the angles are complementary, you can set up the equation: \[ 2x + 3x = 90 \] This simplifies to \( 5x = 90 \), leading to \( x = 18 \). Thus, the angles are \( 2(18) = 36^{\circ} \) and \( 3(18) = 54^{\circ} \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad