Pregunta
upstudy study bank question image url

vironment An accident in 1986 at the Chernobyl nt eased a large amount of plutonium (Pu-239) into the Pu-239 is about 24,110 years. Find the decay constant \( t=N_{0} e^{-k t} \) to find what remains of an initial 20 gram w long will it take for these 20 grams to decay to 1 gra

Ask by Turner Vaughn. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The decay constant for Pu-239 is approximately 0.00002875 per year. It will take about 104,200 years for 20 grams of Pu-239 to decay to 1 gram.

Solución

We start with the radioactive decay formula   N(t) = N₀ · e^(–k·t), where   N₀ is the initial amount,   N(t) is the amount after time t,   k is the decay constant. Step 1. Find the Decay Constant (k) The half-life (t₁/₂) is the time required for a substance to decay to half its initial amount. For Pu-239, we are given   t₁/₂ = 24,110 years. By definition:   N(t₁/₂) = N₀/2 = N₀ · e^(–k·t₁/₂). Dividing both sides by N₀ and solving for k:   ½ = e^(–k·t₁/₂)   ln(½) = –k·t₁/₂          [Take natural logarithm]   –ln2 = –k·t₁/₂   k = ln2 / t₁/₂. So,   k = ln2 / 24110 ≈ 0.693147 / 24110 ≈ 0.00002875 per year. Step 2. Determine the Time to Decay from 20 grams to 1 gram We are given:   Initial amount, N₀ = 20 grams,   Final amount, N = 1 gram. Using the decay law:   1 = 20 · e^(–k·t). Rearrange to solve for t:   e^(–k·t) = 1/20,   Take the natural logarithm of both sides:   –k·t = ln(1/20) = –ln20,   t = ln20 / k. Substitute the value for k:   t = ln20 / (ln2 / 24110) = (24110 · ln20) / ln2. Now, calculate the numerical value:   ln20 ≈ 2.995732,   ln2 ≈ 0.693147. Thus,   t ≈ (24110 · 2.995732) / 0.693147 ≈ 24110 · 4.32193 ≈ 104,200 years. Conclusion: • The decay constant for Pu-239 is about k ≈ 0.00002875 per year. • It will take roughly 104,200 years for an initial 20 grams of Pu-239 to decay to 1 gram.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the decay constant \( k \), we can use the relationship between the half-life and the decay constant. The half-life \( T_{1/2} \) of plutonium-239 is about 24,110 years, which is related to \( k \) by the formula \( k = \frac{\ln(2)}{T_{1/2}} \). Plugging in the values, we find \( k \approx \frac{0.693}{24110} \approx 2.88 \times 10^{-5} \, \text{year}^{-1} \). Now, we can use the decay formula \( N(t) = N_{0} e^{-kt} \) to find how long it takes for 20 grams to decay to 1 gram. Plugging in the values, we set up the equation \( 1 = 20 e^{-kt} \) or \( e^{-kt} = 0.05 \). Taking the natural logarithm gives \( -kt = \ln(0.05) \), leading to \( t \approx \frac{-\ln(0.05)}{k} \approx \frac{-(-2.996)}{2.88 \times 10^{-5}} \approx 104,992 \, \text{years} \). So, it will take approximately 105,000 years for 20 grams of Pu-239 to decay to 1 gram! Can you believe how long these isotopes take? It's like having a time machine that lets us observe geological epochs! As a fun fact, Chernobyl’s legacy teaches us about the importance of nuclear safety and environmental impact. Each atom of Pu-239 is like a little ticking clock, reminding us that radioactivity has long-lasting consequences!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad