Pregunta
upstudy study bank question image url

IV. Find the equation of the circle given the center and radius: Given: Center: \( (8,0), r=1 \)

Ask by Ford Schofield. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the circle is \( (x - 8)^2 + y^2 = 1 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

The equation of a circle is derived from its standard form, which is \((x-h)^2 + (y-k)^2 = r^2\), where \((h, k)\) is the center and \(r\) is the radius. Substituting the given center \((8, 0)\) and radius \(1\) into the equation gives us: \((x - 8)^2 + (y - 0)^2 = 1^2\). Simplifying this, the equation is \((x - 8)^2 + y^2 = 1\). Circles are fascinating shapes with a rich history, dating back to ancient civilizations! The study of circles dates back to the Babylonians and Egyptians, who explored their properties long before the advent of calculus. The Greeks, particularly Apollonius, even classified conic sections, showing just how much circles piqued the curiosity of mathematicians throughout time. In real-world applications, understanding the equations of circles is crucial in fields like architecture and engineering, where circular structures and designs are prevalent. Whether it's designing domes or roundabouts, circles help create functional and aesthetically pleasing elements in urban designs. This knowledge can also extend to technology, such as in game design for creating circular areas of influence or movement!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad