Responder
1. Point-Slope: \(y + 3 = -1(x + 6)\), Slope-Intercept: \(y = -x - 9\), Standard: \(x + y = -9\)
2. Point-Slope: \(y = 6\), Slope-Intercept: \(y = 6\), Standard: \(y = 6\)
3. Vertical Line: \(x = -2\)
4. Point-Slope: \(y + 8 = -\frac{5}{8}(x + 6)\), Slope-Intercept: \(y = -\frac{5}{8}x - \frac{94}{8}\), Standard: \(5x + 8y = -94\)
5. Point-Slope: \(y + 9 = -\frac{7}{5}(x + 2)\), Slope-Intercept: \(y = -\frac{7}{5}x - \frac{59}{5}\), Standard: \(7x + 5y = -59\)
6. Horizontal Line: \(y = 0\)
Solución
Let's solve each problem step by step.
### Problem 13: Point (-6, -3), Slope \( m = -1 \)
**Point-Slope Form:**
The point-slope form of a line is given by:
\[
y - y_1 = m(x - x_1)
\]
Substituting the point \((-6, -3)\) and the slope \(m = -1\):
\[
y - (-3) = -1(x - (-6))
\]
This simplifies to:
\[
y + 3 = -1(x + 6)
\]
**Slope-Intercept Form:**
To convert to slope-intercept form \(y = mx + b\):
\[
y + 3 = -x - 6
\]
\[
y = -x - 9
\]
**Standard Form:**
To convert to standard form \(Ax + By = C\):
\[
x + y = -9
\]
### Problem 14: Point (-7, 6), Slope \( m = 0 \)
**Point-Slope Form:**
Since the slope is \(0\), the line is horizontal:
\[
y - 6 = 0(x + 7)
\]
This simplifies to:
\[
y = 6
\]
**Slope-Intercept Form:**
Already in slope-intercept form:
\[
y = 6
\]
**Standard Form:**
To convert to standard form:
\[
0x + y = 6 \quad \text{or simply} \quad y = 6
\]
### Problem 15: Point (-2, 11), Vertical Line
A vertical line has an undefined slope and is represented as:
\[
x = -2
\]
### Problem 16: Point (-6, -8), Slope \( m = -\frac{5}{8} \)
**Point-Slope Form:**
\[
y - (-8) = -\frac{5}{8}(x - (-6))
\]
This simplifies to:
\[
y + 8 = -\frac{5}{8}(x + 6)
\]
**Slope-Intercept Form:**
Distributing:
\[
y + 8 = -\frac{5}{8}x - \frac{30}{8}
\]
\[
y = -\frac{5}{8}x - \frac{30}{8} - 8
\]
Converting \(-8\) to eighths:
\[
y = -\frac{5}{8}x - \frac{30}{8} - \frac{64}{8}
\]
\[
y = -\frac{5}{8}x - \frac{94}{8}
\]
**Standard Form:**
Multiply through by 8 to eliminate the fraction:
\[
8y = -5x - 94
\]
Rearranging gives:
\[
5x + 8y = -94
\]
### Problem 17: Point (-2, -9), Slope \( m = -\frac{7}{5} \)
**Point-Slope Form:**
\[
y - (-9) = -\frac{7}{5}(x - (-2))
\]
This simplifies to:
\[
y + 9 = -\frac{7}{5}(x + 2)
\]
**Slope-Intercept Form:**
Distributing:
\[
y + 9 = -\frac{7}{5}x - \frac{14}{5}
\]
\[
y = -\frac{7}{5}x - \frac{14}{5} - 9
\]
Converting \(-9\) to fifths:
\[
y = -\frac{7}{5}x - \frac{14}{5} - \frac{45}{5}
\]
\[
y = -\frac{7}{5}x - \frac{59}{5}
\]
**Standard Form:**
Multiply through by 5:
\[
5y = -7x - 59
\]
Rearranging gives:
\[
7x + 5y = -59
\]
### Problem 18: Point (-6, 0), Horizontal Line
A horizontal line has a slope of \(0\) and is represented as:
\[
y = 0
\]
### Summary of Equations
1. **Problem 13:**
- Point-Slope: \(y + 3 = -1(x + 6)\)
- Slope-Intercept: \(y = -x - 9\)
- Standard: \(x + y = -9\)
2. **Problem 14:**
- Point-Slope: \(y = 6\)
- Slope-Intercept: \(y = 6\)
- Standard: \(y = 6\)
3. **Problem 15:**
- Vertical Line: \(x = -2\)
4. **Problem 16:**
- Point-Slope: \(y + 8 = -\frac{5}{8}(x + 6)\)
- Slope-Intercept: \(y = -\frac{5}{8}x - \frac{94}{8}\)
- Standard: \(5x + 8y = -94\)
5. **Problem 17:**
- Point-Slope: \(y + 9 = -\frac{7}{5}(x + 2)\)
- Slope-Intercept: \(y = -\frac{7}{5}x - \frac{59}{5}\)
- Standard: \(7x + 5y = -59\)
6. **Problem 18:**
- Horizontal Line: \(y = 0\)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución