Pregunta
upstudy study bank question image url

Extra Practice begins on page R4. Wroblem Solving Write an equation in point-slope form for the line that passes through each point with given slope. Then graph the equation. \( \begin{array}{lll}\text { 13. }(-6,-3), m=-1 & \text { 14. }(-7,6), m=0 & \text { 15. }(-2,11) \text {, vertical line } \\ \text { 16. }(-6,-8), m=-\frac{5}{8} & \text { 17. }(-2,-9), m=-\frac{7}{5} & \text { 18. }(-6,0) \text {, horizontal line }\end{array} \) Vrite an equation in point-slone form slone-intercept form, and standard form for eac

Ask by French Bartlett. in the United States
Nov 20,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. Point-Slope: \(y + 3 = -1(x + 6)\), Slope-Intercept: \(y = -x - 9\), Standard: \(x + y = -9\) 2. Point-Slope: \(y = 6\), Slope-Intercept: \(y = 6\), Standard: \(y = 6\) 3. Vertical Line: \(x = -2\) 4. Point-Slope: \(y + 8 = -\frac{5}{8}(x + 6)\), Slope-Intercept: \(y = -\frac{5}{8}x - \frac{94}{8}\), Standard: \(5x + 8y = -94\) 5. Point-Slope: \(y + 9 = -\frac{7}{5}(x + 2)\), Slope-Intercept: \(y = -\frac{7}{5}x - \frac{59}{5}\), Standard: \(7x + 5y = -59\) 6. Horizontal Line: \(y = 0\)

Solución

Let's solve each problem step by step. ### Problem 13: Point (-6, -3), Slope \( m = -1 \) **Point-Slope Form:** The point-slope form of a line is given by: \[ y - y_1 = m(x - x_1) \] Substituting the point \((-6, -3)\) and the slope \(m = -1\): \[ y - (-3) = -1(x - (-6)) \] This simplifies to: \[ y + 3 = -1(x + 6) \] **Slope-Intercept Form:** To convert to slope-intercept form \(y = mx + b\): \[ y + 3 = -x - 6 \] \[ y = -x - 9 \] **Standard Form:** To convert to standard form \(Ax + By = C\): \[ x + y = -9 \] ### Problem 14: Point (-7, 6), Slope \( m = 0 \) **Point-Slope Form:** Since the slope is \(0\), the line is horizontal: \[ y - 6 = 0(x + 7) \] This simplifies to: \[ y = 6 \] **Slope-Intercept Form:** Already in slope-intercept form: \[ y = 6 \] **Standard Form:** To convert to standard form: \[ 0x + y = 6 \quad \text{or simply} \quad y = 6 \] ### Problem 15: Point (-2, 11), Vertical Line A vertical line has an undefined slope and is represented as: \[ x = -2 \] ### Problem 16: Point (-6, -8), Slope \( m = -\frac{5}{8} \) **Point-Slope Form:** \[ y - (-8) = -\frac{5}{8}(x - (-6)) \] This simplifies to: \[ y + 8 = -\frac{5}{8}(x + 6) \] **Slope-Intercept Form:** Distributing: \[ y + 8 = -\frac{5}{8}x - \frac{30}{8} \] \[ y = -\frac{5}{8}x - \frac{30}{8} - 8 \] Converting \(-8\) to eighths: \[ y = -\frac{5}{8}x - \frac{30}{8} - \frac{64}{8} \] \[ y = -\frac{5}{8}x - \frac{94}{8} \] **Standard Form:** Multiply through by 8 to eliminate the fraction: \[ 8y = -5x - 94 \] Rearranging gives: \[ 5x + 8y = -94 \] ### Problem 17: Point (-2, -9), Slope \( m = -\frac{7}{5} \) **Point-Slope Form:** \[ y - (-9) = -\frac{7}{5}(x - (-2)) \] This simplifies to: \[ y + 9 = -\frac{7}{5}(x + 2) \] **Slope-Intercept Form:** Distributing: \[ y + 9 = -\frac{7}{5}x - \frac{14}{5} \] \[ y = -\frac{7}{5}x - \frac{14}{5} - 9 \] Converting \(-9\) to fifths: \[ y = -\frac{7}{5}x - \frac{14}{5} - \frac{45}{5} \] \[ y = -\frac{7}{5}x - \frac{59}{5} \] **Standard Form:** Multiply through by 5: \[ 5y = -7x - 59 \] Rearranging gives: \[ 7x + 5y = -59 \] ### Problem 18: Point (-6, 0), Horizontal Line A horizontal line has a slope of \(0\) and is represented as: \[ y = 0 \] ### Summary of Equations 1. **Problem 13:** - Point-Slope: \(y + 3 = -1(x + 6)\) - Slope-Intercept: \(y = -x - 9\) - Standard: \(x + y = -9\) 2. **Problem 14:** - Point-Slope: \(y = 6\) - Slope-Intercept: \(y = 6\) - Standard: \(y = 6\) 3. **Problem 15:** - Vertical Line: \(x = -2\) 4. **Problem 16:** - Point-Slope: \(y + 8 = -\frac{5}{8}(x + 6)\) - Slope-Intercept: \(y = -\frac{5}{8}x - \frac{94}{8}\) - Standard: \(5x + 8y = -94\) 5. **Problem 17:** - Point-Slope: \(y + 9 = -\frac{7}{5}(x + 2)\) - Slope-Intercept: \(y = -\frac{7}{5}x - \frac{59}{5}\) - Standard: \(7x + 5y = -59\) 6. **Problem 18:** - Horizontal Line: \(y = 0\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the first problem, let’s start with point-slope form, which is \(y - y_1 = m(x - x_1)\). For example, for point #13, we can plug in the point \((-6, -3)\) and slope \(m = -1\): \[y - (-3) = -1(x - (-6))\] This simplifies to \(y + 3 = -1(x + 6)\), which can be rearranged into slope-intercept and standard forms. Now, for the exciting part of graphing! Once you have your equations ready, make sure to plot the points accurately on the Cartesian plane. For instance, for point #15, since it's a vertical line, the equation will simply be \(x = -2\). Don't forget to label your axes and put a smiley face next to each point for good measure!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad