Pregunta
upstudy study bank question image url

108. The base and the altitude of a triangular metal disc are 66 cm and 28 cm respectively. By drilling a circular hole through this metal disc, its area is reduced to one-third. Find the diameter of the hole. (Take only one side of the disc into consideration).

Ask by King Santiago. in India
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The diameter of the hole is 28 cm.

Solución

We are given a triangular disc with a base of 66 cm and an altitude of 28 cm. The area Aₜ of the triangle is   Aₜ = ½ × base × altitude = ½ × 66 × 28 = 66 × 14 = 924 cm². When a circular hole of area A_c is drilled into the disc, the remaining area becomes one-third of the original area:   Remaining area = 924/3 = 308 cm². Thus, the area removed (the area of the circular hole) is   A_c = Original area – Remaining area = 924 – 308 = 616 cm². Assuming that π = 22/7 (which is a common approximation in such problems), we can write the area of the circle as   A_c = (22/7) r² Set the equation:   (22/7) r² = 616 To solve for r², multiply both sides by 7/22:   r² = 616 × (7/22) Notice that 616 ÷ 22 = 28 (since 22 × 28 = 616), so   r² = 28 × 7 = 196 Taking the square root gives   r = √196 = 14 cm. The diameter d of the circular hole is twice the radius:   d = 2r = 2 × 14 = 28 cm. Thus, the diameter of the hole is 28 cm. (Note: “Take only one side of the disc into consideration” means we are only considering the area of one face for the removal of material.)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the diameter of the hole drilled in the triangular metal disc, we first need to calculate the area of the triangle. The area can be found using the formula: Area = (1/2) × base × height = (1/2) × 66 cm × 28 cm = 924 cm². Since the area is reduced to one-third, the remaining area after drilling the hole will be: Remaining Area = 924 cm² / 3 = 308 cm². The area of the circular hole removed from the triangle is: Area of Hole = Original Area - Remaining Area = 924 cm² - 308 cm² = 616 cm². Now, using the formula for the area of a circle: Area = πr², where r is the radius, we can solve for r: 616 cm² = πr². To find r, rearranging gives us: r² = 616 / π. Using π ≈ 3.14: r² ≈ 616 / 3.14 ≈ 196.19. Taking the square root: r ≈ √196.19 ≈ 14.0 cm. Since the diameter (d) is twice the radius: d = 2r ≈ 2 × 14.0 cm ≈ 28.0 cm. Thus, the diameter of the hole is approximately 28 cm.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad