Pregunta
upstudy study bank question image url

10. Smannah is making a quilt with squares that have side lengths of is foot each. Are the side lengths of the squares closer to \( \frac{1}{2} \) 16 foot or 1 foot long? Draw a diagram to support your answer.

Ask by Long Rowe. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The side lengths of the squares are closer to 1 foot long.

Solución

To determine if the side lengths of the squares are closer to \( \frac{1}{2} \) foot or 1 foot, we can compare the two values. Given: - Side length of the squares = 1 foot To compare, we can calculate the difference between 1 foot and \( \frac{1}{2} \) foot. Difference = 1 foot - \( \frac{1}{2} \) foot Let's calculate the difference. Calculate the value by following steps: - step0: Calculate: \(1-\frac{1}{2}\) - step1: Reduce fractions to a common denominator: \(\frac{2}{2}-\frac{1}{2}\) - step2: Transform the expression: \(\frac{2-1}{2}\) - step3: Subtract the numbers: \(\frac{1}{2}\) The difference between 1 foot and \( \frac{1}{2} \) foot is \( \frac{1}{2} \) foot. Since the difference is \( \frac{1}{2} \) foot, the side lengths of the squares are closer to 1 foot than to \( \frac{1}{2} \) foot. Therefore, the side lengths of the squares are closer to 1 foot long.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To figure out if the side lengths of the squares (1 foot) are closer to \( \frac{1}{2} \) foot or 1 foot, we can simply compare their values. \( \frac{1}{2} \) foot is equivalent to 0.5 feet, and since 1 foot is obviously greater than 0.5 feet, the distance from 0.5 feet to 1 foot is \( 1 - 0.5 = 0.5 \) feet. Therefore, the squares are exactly 0 feet away from 1 foot but 0.5 feet away from \( \frac{1}{2} \) foot, making their side lengths closer to 1 foot. For a visual aid, imagine a line with 0 at the far left, 0.5 in the middle, and 1 at the far right. The point marked “1” is precisely where the squares lie, sitting snugly right on top of that point, proving they’re much closer to 1 foot than \( \frac{1}{2} \) foot!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad