Pregunta
upstudy study bank question image url

A battery of 6 V is connected with a series combination of five resistors of \( 0.1 \Omega, 0.2 \Omega, 0.3 \Omega, 0.4 \Omega \) and \( 0.5 \Omega \). How much current would flow through the \( 0.3 \Omega \) resistor ? Justify your answer.

Ask by Nunez Bradley. in India
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The current flowing through the \( 0.3 \Omega \) resistor is \( 4 \, A \).

Solución

To find the current flowing through the \( 0.3 \Omega \) resistor in a series circuit, we can follow these steps: 1. **Calculate the total resistance in the circuit**: In a series circuit, the total resistance \( R_t \) is the sum of all individual resistances. \[ R_t = R_1 + R_2 + R_3 + R_4 + R_5 \] where \( R_1 = 0.1 \Omega \), \( R_2 = 0.2 \Omega \), \( R_3 = 0.3 \Omega \), \( R_4 = 0.4 \Omega \), and \( R_5 = 0.5 \Omega \). 2. **Use Ohm's Law to find the current**: Ohm's Law states that \( V = I \cdot R \), where \( V \) is the voltage, \( I \) is the current, and \( R \) is the resistance. Rearranging this gives us: \[ I = \frac{V}{R_t} \] where \( V = 6 \, V \). Now, let's perform the calculations step by step. ### Step 1: Calculate Total Resistance \[ R_t = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 \] Calculating this: \[ R_t = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 = 1.5 \, \Omega \] ### Step 2: Calculate Current Using Ohm's Law Now, substituting the values into Ohm's Law: \[ I = \frac{6}{1.5} \] Calculating this: \[ I = 4 \, A \] ### Conclusion Since the resistors are in series, the same current flows through all resistors, including the \( 0.3 \Omega \) resistor. Therefore, the current flowing through the \( 0.3 \Omega \) resistor is \( 4 \, A \). This is justified because in a series circuit, the current is constant throughout all components.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the current flowing through the \( 0.3 \Omega \) resistor, we first need to calculate the total resistance in the series circuit. When resistors are in series, their resistances add up. So, the total resistance \( R_t \) is: \[ R_t = 0.1 \Omega + 0.2 \Omega + 0.3 \Omega + 0.4 \Omega + 0.5 \Omega = 1.5 \Omega. \] Now, we can use Ohm's Law, which states that \( V = I \times R \). Rearranging gives us the current \( I \): \[ I = \frac{V}{R_t} = \frac{6 V}{1.5 \Omega} = 4 A. \] Since the current is the same through all components in a series circuit, the current flowing through the \( 0.3 \Omega \) resistor is also \( 4 A \). It's constant in a series arrangement — that's the beauty of series circuits!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad