(2) Which expression is equal to: \( (a \cdot z) \div(a \cdot e) \) (1) \( 20 \cdot z \cdot \) e (B) \( 0 \cdot 2 \cdot 2 \) (C) \( \mathrm{a}(z+2) \) (D) \( a(z \cdot 2) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To simplify the expression \( (a \cdot z) \div (a \cdot e) \), we can use the property of division. Since \( a \) is in both the numerator and the denominator, assuming \( a \neq 0 \), we can cancel it out: \[ (a \cdot z) \div (a \cdot e) = \frac{a \cdot z}{a \cdot e} = \frac{z}{e}. \] Now, looking at the given options, none of them simplifies directly to \( \frac{z}{e} \). However, understanding that this expression simplifies down to a fraction can help clarify the results and drive home the importance of reduction in algebraic expressions. It's crucial to remember common mistakes: don’t cancel terms if they are equal to zero. If \( a=0 \) in our original expression, we’d be dividing by zero, which is a big no-no in math! Always check for that before making any simplifications!
