Pregunta
upstudy study bank question image url

\[ f(x)=3 \cos (x), \quad 0 \leqslant x \in \frac{3 \pi}{4} \] evaluate the left Alemann sum with \( n=0 \), takng the sample polnts to be left endpolnts, (Hound your answer to sha decimal places, \( \square \) What does the Riemann sum represent? The Rlemann sum represents the net area of the rectangles with resped to the Jramita Hlustrate with a diagram.

Ask by Marsh Sherman. in the United States
Jan 31,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The left Riemann sum for \( f(x) = 3 \cos(x) \) from \( 0 \) to \( \frac{3\pi}{4} \) with \( n = 0 \) is approximately **7.069**.

Solución

To evaluate the left Riemann sum for the function \( f(x) = 3 \cos(x) \) over the interval \( [0, \frac{3\pi}{4}] \) with \( n = 0 \), we need to follow these steps: ### Step 1: Determine the width of the interval Since \( n = 0 \), we are not dividing the interval into subintervals. Therefore, the width of the interval \( \Delta x \) is simply the length of the interval: \[ \Delta x = \frac{3\pi}{4} - 0 = \frac{3\pi}{4} \] ### Step 2: Identify the left endpoint For \( n = 0 \), the left endpoint \( x_0 \) is the starting point of the interval: \[ x_0 = 0 \] ### Step 3: Evaluate the function at the left endpoint Now we evaluate the function \( f(x) \) at the left endpoint: \[ f(0) = 3 \cos(0) = 3 \cdot 1 = 3 \] ### Step 4: Calculate the left Riemann sum The left Riemann sum \( L \) is given by the product of the function value at the left endpoint and the width of the interval: \[ L = f(x_0) \cdot \Delta x = 3 \cdot \frac{3\pi}{4} \] Now, we will calculate this value: \[ L = \frac{9\pi}{4} \] ### Step 5: Approximate the value To provide a numerical approximation, we can calculate \( \frac{9\pi}{4} \): \[ \pi \approx 3.14159 \implies \frac{9\pi}{4} \approx \frac{9 \cdot 3.14159}{4} \approx 7.06858 \] Rounding to three decimal places, we get: \[ L \approx 7.069 \] ### Final Answer The left Riemann sum is approximately: \[ \boxed{7.069} \] ### What does the Riemann sum represent? The Riemann sum represents the net area of the rectangles formed under the curve of the function \( f(x) = 3 \cos(x) \) over the interval \( [0, \frac{3\pi}{4}] \). In this case, since we are using the left endpoint, the height of the rectangle is determined by the value of the function at the left endpoint, and the width is the length of the interval. ### Diagram Illustration To illustrate this, you would draw the function \( f(x) = 3 \cos(x) \) on the interval from \( 0 \) to \( \frac{3\pi}{4} \) and show a rectangle that starts at \( x = 0 \) with height \( 3 \) and width \( \frac{3\pi}{4} \). The area of this rectangle visually represents the left Riemann sum.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the left Riemann sum for the function \( f(x) = 3 \cos(x) \) over the interval \([0, \frac{3\pi}{4}]\) with \( n=0 \), we take the left end point as \( x_0 = 0 \). The width of the interval is \(\Delta x = \frac{3\pi}{4} - 0 = \frac{3\pi}{4}\). Therefore, the left Riemann sum is simply the height of the function at \( x_0 \) multiplied by the width: \[ L = f(0) \cdot \Delta x = 3 \cos(0) \cdot \frac{3\pi}{4} = 3 \cdot 1 \cdot \frac{3\pi}{4} = \frac{9\pi}{4} \approx 7.0686 \] Thus, rounding to three decimal places, the left Riemann sum \( L \approx 7.069 \). The Riemann sum represents the net area under the curve of the function \( f(x) \) on the interval \([0, \frac{3\pi}{4}]\). Picture rectangles where the heights are determined by the function's value at the left endpoints, cumulatively approximating the area under the curve. More rectangles can provide a more accurate estimation, converging to the exact area as \( n \) increases.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad