\[ f(x)=3 \cos (x), \quad 0 \leqslant x \in \frac{3 \pi}{4} \] evaluate the left Alemann sum with \( n=0 \), takng the sample polnts to be left endpolnts, (Hound your answer to sha decimal places, \( \square \) What does the Riemann sum represent? The Rlemann sum represents the net area of the rectangles with resped to the Jramita Hlustrate with a diagram.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To evaluate the left Riemann sum for the function \( f(x) = 3 \cos(x) \) over the interval \([0, \frac{3\pi}{4}]\) with \( n=0 \), we take the left end point as \( x_0 = 0 \). The width of the interval is \(\Delta x = \frac{3\pi}{4} - 0 = \frac{3\pi}{4}\). Therefore, the left Riemann sum is simply the height of the function at \( x_0 \) multiplied by the width: \[ L = f(0) \cdot \Delta x = 3 \cos(0) \cdot \frac{3\pi}{4} = 3 \cdot 1 \cdot \frac{3\pi}{4} = \frac{9\pi}{4} \approx 7.0686 \] Thus, rounding to three decimal places, the left Riemann sum \( L \approx 7.069 \). The Riemann sum represents the net area under the curve of the function \( f(x) \) on the interval \([0, \frac{3\pi}{4}]\). Picture rectangles where the heights are determined by the function's value at the left endpoints, cumulatively approximating the area under the curve. More rectangles can provide a more accurate estimation, converging to the exact area as \( n \) increases.