Pregunta
upstudy study bank question image url

Suppose that a ball is rolling down a ramp The distanco traveled by tho ball is given by the function \( s(t)=G t^{2} \), where \( t \) is the time, in seconds, after the ball is released, and \( s(t) \) is measured in feet. Find the balls average velocity in each of the following time intervals. a \( t_{1}=2 \) to \( _{2}=3 \) \( \frac{\Delta s}{\Delta t}=30 \mathrm{ft} / \mathrm{sec} \) b \( t_{1}=2 \) to \( _{2}=25 \) \( \frac{\Delta s}{\Delta t}=\square \mathrm{tt} / \mathrm{sec} \)

Ask by Allan Christensen. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The average velocity from 2 to 25 seconds is 162 ft/sec.

Solución

We are given that the distance traveled by the ball is   s(t) = G · t² where t is the time (in seconds) and s(t) is in feet. The average velocity over an interval [t₁, t₂] is given by   v_avg = (s(t₂) – s(t₁)) / (t₂ – t₁) Step 1. Write down s(t₂) and s(t₁):   s(t₂) = G · (t₂)²   s(t₁) = G · (t₁)² Step 2. Find the difference:   s(t₂) – s(t₁) = G(t₂² – t₁²) Notice that t₂² – t₁² factors as (t₂ + t₁)(t₂ – t₁) so that   s(t₂) – s(t₁) = G(t₂ + t₁)(t₂ – t₁) Step 3. Then, the average velocity becomes:   v_avg = [G(t₂ + t₁)(t₂ – t₁)] / (t₂ – t₁) = G(t₂ + t₁) Now, we can calculate the answers for the given intervals. ───────────────────────────── (a) For t₁ = 2 sec and t₂ = 3 sec:   v_avg = G(3 + 2) = 5G The answer provided is 30 ft/sec, so we have:   5G = 30 ⇒ G = 30/5 = 6 ft/sec² ───────────────────────────── (b) For t₁ = 2 sec and t₂ = 25 sec:   v_avg = G(25 + 2) = G(27) Since we already found G = 6:   v_avg = 6 × 27 = 162 ft/sec ───────────────────────────── Thus, the average velocity for the time interval from 2 to 25 seconds is 162 ft/sec.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the average velocity of the ball rolling down the ramp in the given time intervals, we can use the formula for average velocity: \[ \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \] For part (a) from \( t_1 = 2 \) to \( t_2 = 3 \): First, calculate \( s(2) \) and \( s(3) \): \[ s(2) = G \cdot (2^2) = 4G \] \[ s(3) = G \cdot (3^2) = 9G \] Now, substituting into the average velocity formula: \[ \frac{\Delta s}{\Delta t} = \frac{9G - 4G}{3 - 2} = \frac{5G}{1} = 5G \] Now, for part (b) from \( t_1 = 2 \) to \( t_2 = 25 \): Calculate \( s(2) \) as before: \[ s(2) = 4G \] Calculate \( s(25) \): \[ s(25) = G \cdot (25^2) = 625G \] Now, substituting this into the average velocity formula: \[ \frac{\Delta s}{\Delta t} = \frac{625G - 4G}{25 - 2} = \frac{621G}{23} \approx 27G \] So, the answers are: a) Average velocity = \( 5G \text{ ft/sec} \) b) Average velocity = \( \frac{621G}{23} \text{ ft/sec} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad