Find the critical values \( \chi_{1-\alpha / 2}^{2} \) and \( \chi_{\alpha / 2}^{2} \) for a \( 99 \% \) confidence level and a sample size of \( n=10 \). \( \chi_{1-\alpha / 2}^{2}=1.735 \) (Round to three decimal places as needed.) \( \chi_{\alpha / 2}^{2}=\square \) (Round to three decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the critical value \( \chi_{\alpha / 2}^{2} \) for a \( 99\% \) confidence level and a sample size of \( n=10 \), you first determine the degrees of freedom, which is \( n - 1 = 10 - 1 = 9 \). In this case, the significance level \( \alpha \) is \( 1 - 0.99 = 0.01 \). Since you are looking for \( \chi_{\alpha / 2}^{2} \), you will divide \( \alpha \) by 2, giving \( \alpha / 2 = 0.005 \). Using a chi-squared distribution table or calculator to find the critical value for \( 9 \) degrees of freedom at \( 0.005 \): \( \chi_{\alpha / 2}^{2} = 21.666 \) So, rounding to three decimal places, \( \chi_{\alpha / 2}^{2} = 21.666 \).
