Pregunta
upstudy study bank question image url

A company claims that its packages of beads contain, on average, 50 beads with a standard deviation of 5.4 beads. In a hypothesis test of this is the \( z \)-statistic for the sample? Round the claim, \( H_{0} \) is \( \mu=50 \) and \( \mathrm{H}_{\mathrm{a}} \) is \( \mu \neq 50 \), where \( \mu \) is the average number of beads per package. Based on a sample of 20 packages, Celia calculates a mean of 52.5 beads per package. Formula for z-statistic: \( z=\frac{\bar{x}-\mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \)

Ask by Gordon Morrison. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The \( z \)-statistic for the sample is approximately 2.07.

Solución

To calculate the \( z \)-statistic for the sample, we can use the formula provided: \[ z = \frac{\bar{x} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \] Given: - Claim: \( \mu = 50 \) beads - Standard deviation: \( \sigma = 5.4 \) beads - Sample size: \( n = 20 \) packages - Sample mean: \( \bar{x} = 52.5 \) beads Substitute the given values into the formula: \[ z = \frac{52.5 - 50}{\left(\frac{5.4}{\sqrt{20}}\right)} \] Now, we can calculate the \( z \)-statistic. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(52.5-50\right)}{\left(\frac{5.4}{\sqrt{20}}\right)}\) - step1: Remove the parentheses: \(\frac{52.5-50}{\frac{5.4}{\sqrt{20}}}\) - step2: Simplify the root: \(\frac{52.5-50}{\frac{5.4}{2\sqrt{5}}}\) - step3: Divide the terms: \(\frac{52.5-50}{\frac{27}{10\sqrt{5}}}\) - step4: Subtract the numbers: \(\frac{2.5}{\frac{27}{10\sqrt{5}}}\) - step5: Convert the expressions: \(\frac{\frac{5}{2}}{\frac{27}{10\sqrt{5}}}\) - step6: Multiply by the reciprocal: \(\frac{5}{2}\times \frac{10\sqrt{5}}{27}\) - step7: Reduce the numbers: \(5\times \frac{5\sqrt{5}}{27}\) - step8: Multiply: \(\frac{5\times 5\sqrt{5}}{27}\) - step9: Multiply: \(\frac{25\sqrt{5}}{27}\) The \( z \)-statistic for the sample is approximately 2.070433.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the \( z \)-statistic for the sample, plug the values into the formula: your sample mean (\( \bar{x} \)) is 52.5, the claimed population mean (\( \mu \)) is 50, the standard deviation (\( \sigma \)) is 5.4, and the sample size (\( n \)) is 20. First, calculate the standard error (SE): \( SE = \frac{5.4}{\sqrt{20}} \approx 1.21 \). Now, substitute into the formula: \( z = \frac{52.5 - 50}{1.21} \approx 2.07 \). Calculating \( z \)-statistics gives an insight into how far your sample mean is from the population mean in terms of standard deviations. A \( z \)-value of 2.07 suggests that Celia's finding is about 2.07 standard deviations above the claimed mean. This statistic is crucial for deciding whether to reject the null hypothesis, shedding light on whether 52.5 beads should be seen as a significant deviation from the claim of 50!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad