Pregunta
upstudy study bank question image url

Polygon \( \mathrm{ABCD} \cong \) Polygon JKLM \[ \begin{array}{l}\mathrm{AC}=10 \mathrm{x}+6 \\ \mathrm{JL}=9 \mathrm{x}+17\end{array} \] Find the value of x and JL. Provide answers accurate to the nearest hundredth.

Ask by Vaughan Ross. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = 11 \) and \( JL = 116 \).

Solución

To solve for \( x \) and \( JL \), we start with the information given about the congruent polygons \( \mathrm{ABCD} \) and \( \mathrm{JKLM} \). Since the polygons are congruent, the corresponding sides are equal. Therefore, we can set up the equation: \[ AC = JL \] Substituting the expressions for \( AC \) and \( JL \): \[ 10x + 6 = 9x + 17 \] Now, we will solve for \( x \) step by step. 1. **Isolate \( x \)**: - Subtract \( 9x \) from both sides: \[ 10x - 9x + 6 = 17 \] This simplifies to: \[ x + 6 = 17 \] 2. **Subtract 6 from both sides**: \[ x = 17 - 6 \] Thus, we find: \[ x = 11 \] Now that we have the value of \( x \), we can substitute it back into the expression for \( JL \): \[ JL = 9x + 17 \] Substituting \( x = 11 \): \[ JL = 9(11) + 17 \] Calculating this gives: \[ JL = 99 + 17 = 116 \] Thus, the final answers are: - The value of \( x \) is \( 11 \). - The value of \( JL \) is \( 116 \). Both answers are accurate to the nearest hundredth, though they are whole numbers. Final results: - \( x = 11 \) - \( JL = 116 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Since the polygons \( \mathrm{ABCD} \) and \( \mathrm{JKLM} \) are congruent, the corresponding sides are equal. Therefore, we can set the expressions for the lengths of diagonals \( \mathrm{AC} \) and \( \mathrm{JL} \) equal to each other: \[ 10x + 6 = 9x + 17. \] Now, let's solve for \( x \): 1. Subtract \( 9x \) from both sides: \[ 10x - 9x + 6 = 17, \] which simplifies to: \[ x + 6 = 17. \] 2. Next, subtract 6 from both sides: \[ x = 17 - 6, \] leading to: \[ x = 11. \] Now that we have found \( x = 11 \), we can find the length of \( \mathrm{JL} \): \[ \mathrm{JL} = 9x + 17 = 9(11) + 17 = 99 + 17 = 116. \] Thus, the value of \( x \) is \( 11 \) and the length of \( \mathrm{JL} \) is \( 116 \).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad