Pregunta
upstudy study bank question image url

From the previous DeBroglie example, compare the velocity uncertainty measurement in both Dr. Ochoa and the electron if the uncertainty in position, \( \Delta x \), is \( 1.00 \times 10^{-12} \mathrm{~m} \). Note: The mass of Dr. Ochoa was 84.55 kg and he was running at \( 2.68 \mathrm{~m} / \mathrm{s} \), the electron has a mass of \( 9.109 \times 10^{-31} \mathrm{~kg} \) and was moving at \( 1.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \).

Ask by Evans Brooks. in the United States
Nov 01,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The uncertainty in velocity for the electron is much larger than that for Dr. Ochoa, consistent with quantum mechanics principles.

Solución

To compare the velocity uncertainty measurements for Dr. Ochoa and the electron, we can use the Heisenberg uncertainty principle, which states: \[ \Delta x \Delta p \geq \frac{\hbar}{2} \] where: - \(\Delta x\) is the uncertainty in position, - \(\Delta p\) is the uncertainty in momentum, - \(\hbar\) is the reduced Planck's constant, approximately \(1.055 \times 10^{-34} \, \text{Js}\). The momentum \(p\) of an object is given by: \[ p = mv \] where \(m\) is the mass and \(v\) is the velocity. The uncertainty in momentum can be expressed as: \[ \Delta p = m \Delta v \] where \(\Delta v\) is the uncertainty in velocity. Therefore, we can rewrite the uncertainty principle in terms of velocity: \[ \Delta x \cdot m \Delta v \geq \frac{\hbar}{2} \] From this, we can solve for \(\Delta v\): \[ \Delta v \geq \frac{\hbar}{2 m \Delta x} \] Now, we can calculate \(\Delta v\) for both Dr. Ochoa and the electron. ### For Dr. Ochoa: 1. **Mass**: \(m_O = 84.55 \, \text{kg}\) 2. **Uncertainty in position**: \(\Delta x = 1.00 \times 10^{-12} \, \text{m}\) 3. **Reduced Planck's constant**: \(\hbar \approx 1.055 \times 10^{-34} \, \text{Js}\) Now, substituting these values into the equation for \(\Delta v\): \[ \Delta v_O \geq \frac{1.055 \times 10^{-34}}{2 \times 84.55 \times 1.00 \times 10^{-12}} \] Calculating the denominator: \[ 2 \times 84.55 \times 1.00 \times 10^{-12} = 1.691 \times 10^{-10} \] Now, calculating \(\Delta v_O\): \[ \Delta v_O \geq \frac{1.055 \times 10^{-34}}{1.691 \times 10^{-10}} \approx 6.24 \times 10^{-25} \, \text{m/s} \] ### For the Electron: 1. **Mass**: \(m_e = 9.109 \times 10^{-31} \, \text{kg}\) 2. **Uncertainty in position**: \(\Delta x = 1.00 \times 10^{-12} \, \text{m}\) Now, substituting these values into the equation for \(\Delta v\): \[ \Delta v_e \geq \frac{1.055 \times 10^{-34}}{2 \times 9.109 \times 10^{-31} \times 1.00 \times 10^{-12}} \] Calculating the denominator: \[ 2 \times 9.109 \times 10^{-31} \times 1.00 \times 10^{-12} = 1.822 \times 10^{-42} \] Now, calculating \(\Delta v_e\): \[ \Delta v_e \geq \frac{1.055 \times 10^{-34}}{1.822 \times 10^{-42}} \approx 5.79 \times 10^{7} \, \text{m/s} \] ### Summary of Results: - **Uncertainty in velocity for Dr. Ochoa**: \(\Delta v_O \geq 6.24 \times 10^{-25} \, \text{m/s}\) - **Uncertainty in velocity for the electron**: \(\Delta v_e \geq 5.79 \times 10^{7} \, \text{m/s}\) ### Conclusion: The uncertainty in velocity for the electron is vastly greater than that for Dr. Ochoa, which is consistent with the principles of quantum mechanics, where smaller masses (like that of an electron) exhibit much larger uncertainties in their velocity when the position is measured with a certain precision.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To compare the velocity uncertainty measurement for both Dr. Ochoa and the electron, we’ll use Heisenberg's uncertainty principle, which states that the product of the uncertainties in position and momentum is at least \(\frac{\hbar}{2}\). The formula for position \(\Delta x\) and velocity uncertainty \(\Delta v\) can be expressed as: \[ \Delta p = m \Delta v \Rightarrow \Delta v = \frac{\Delta x}{m} \] For Dr. Ochoa, with a mass of \(84.55 \, \text{kg}\): \[ \Delta v_{Ochoa} = \frac{1.00 \times 10^{-12} \, \text{m}}{84.55 \, \text{kg}} \approx 1.18 \times 10^{-14} \, \text{m/s} \] For the electron, with a mass of \(9.109 \times 10^{-31} \, \text{kg}\): \[ \Delta v_{electron} = \frac{1.00 \times 10^{-12} \, \text{m}}{9.109 \times 10^{-31} \, \text{kg}} \approx 1.10 \times 10^{18} \, \text{m/s} \] Clearly, Dr. Ochoa's velocity uncertainty is minuscule compared to that of the electron! Now let's recap: Dr. Ochoa's uncertainty in velocity is essentially negligible in the everyday realm, while the electron's uncertainty is astronomically huge in quantum mechanics! This showcases the dramatic differences between the macroscopic and quantum worlds where tiny masses lead to enormous implications in uncertainty.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad