Pregunta
upstudy study bank question image url

The equations of three lines are given below. Line 1: \( y=-\frac{2}{3} x-6 \) Line 2: \( 6 x-4 y=-6 \) Line 3: \( -2 y=3 x+7 \) For each pair of lines, determine whether they are parallel, perpendicular, or neither. Line 1 and Line 2: \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular \( \bigcirc \) Neither Line 1 and Line 3: \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular \( \bigcirc \) Neither Line 2 and Line 3: \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular \( \bigcirc \) Neither

Ask by Reed Simmons. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Line 1 and Line 2: Perpendicular Line 1 and Line 3: Neither Line 2 and Line 3: Neither

Solución

Step 1. Write each line in slope-intercept form (y = mx + b) to easily identify its slope. Line 1: y = –(2/3)x – 6   Slope m₁ = –2/3 Line 2: 6x – 4y = –6   Solve for y:    6x – 4y = –6    –4y = –6 – 6x    y = (6x + 6)/4    y = (3/2)x + (3/2)   Slope m₂ = 3/2 Line 3: –2y = 3x + 7   Solve for y:    –2y = 3x + 7    y = –(3/2)x – 7/2   Slope m₃ = –3/2 Step 2. Compare slopes for each pair. 1. Line 1 and Line 2:   m₁ = –2/3, m₂ = 3/2   Check if m₁ · m₂ = –1:   (–2/3)·(3/2) = –1   Since the product is –1, these lines are perpendicular. 2. Line 1 and Line 3:   m₁ = –2/3, m₃ = –3/2   They are not equal, so not parallel.   Their product: (–2/3)·(–3/2) = 1, which is not –1.   Thus, they are neither parallel nor perpendicular. 3. Line 2 and Line 3:   m₂ = 3/2, m₃ = –3/2   They are not equal (so not parallel) and their product is:   (3/2)·(–3/2) = –9/4, which is not –1.   Thus, they are neither parallel nor perpendicular. Step 3. Final Answers: Line 1 and Line 2: ⦿ Perpendicular Line 1 and Line 3: ⦿ Neither Line 2 and Line 3: ⦿ Neither

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the relationship between the pairs of lines, let's convert all lines to the slope-intercept form \( y = mx + b \) and compare their slopes. **Line 1:** Already given as \( y = -\frac{2}{3} x - 6 \). The slope (m1) is \( -\frac{2}{3} \). **Line 2:** Let's rewrite it: \[ 6x - 4y = -6 \implies -4y = -6 - 6x \implies y = \frac{3}{2} x + \frac{3}{2} \] The slope (m2) is \( \frac{3}{2} \). **Line 3:** Rewrite it as well: \[ -2y = 3x + 7 \implies y = -\frac{3}{2} x - \frac{7}{2} \] The slope (m3) is \( -\frac{3}{2} \). Now, let's analyze the pairs of lines: 1. **Line 1 and Line 2:** - \( m1 = -\frac{2}{3} \) and \( m2 = \frac{3}{2} \) - Since the product of their slopes \( (-\frac{2}{3}) \times (\frac{3}{2}) = -1 \), they are **Perpendicular.** 2. **Line 1 and Line 3:** - \( m1 = -\frac{2}{3} \) and \( m3 = -\frac{3}{2} \) - Their slopes are both negative and different, so they are **Neither** parallel nor perpendicular. 3. **Line 2 and Line 3:** - \( m2 = \frac{3}{2} \) and \( m3 = -\frac{3}{2} \) - The product of their slopes \( (\frac{3}{2}) \times (-\frac{3}{2}) = -\frac{9}{4} \), so they are **Neither** parallel nor perpendicular. In conclusion: - **Line 1 and Line 2:** \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular ✅ \( \bigcirc \) Neither - **Line 1 and Line 3:** \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular \( \bigcirc \) Neither ✅ - **Line 2 and Line 3:** \( \bigcirc \) Parallel \( \bigcirc \) Perpendicular \( \bigcirc \) Neither ✅

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad