Approximate the integral below using a left hand sum with 5 rectangles. Round your final answer to the nearest thousandth. \( \int_{4}^{9}\left(\frac{1-\sqrt{x}}{\sqrt{x}}\right) d x \approx[?] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To approximate the integral \( \int_{4}^{9}\left(\frac{1-\sqrt{x}}{\sqrt{x}}\right) d x \) using a left-hand sum with 5 rectangles, we first need to determine the width of each rectangle. The interval from 4 to 9 has a length of \( 9 - 4 = 5 \). Dividing this by the number of rectangles (5), we find the width of each rectangle: \[ \Delta x = \frac{5}{5} = 1. \] Next, we will calculate the left endpoints of the rectangles, which are: 4, 5, 6, 7, and 8. Now, we substitute these x-values into the function \( f(x) = \frac{1 - \sqrt{x}}{\sqrt{x}} \): \[ f(4) = \frac{1 - \sqrt{4}}{\sqrt{4}} = \frac{1 - 2}{2} = -\frac{1}{2}, \] \[ f(5) = \frac{1 - \sqrt{5}}{\sqrt{5}} = \frac{1 - \sqrt{5}}{\sqrt{5}}, \] \[ f(6) = \frac{1 - \sqrt{6}}{\sqrt{6}} = \frac{1 - \sqrt{6}}{\sqrt{6}}, \] \[ f(7) = \frac{1 - \sqrt{7}}{\sqrt{7}} = \frac{1 - \sqrt{7}}{\sqrt{7}}, \] \[ f(8) = \frac{1 - \sqrt{8}}{\sqrt{8}} = \frac{1 - 2\sqrt{2}}{2\sqrt{2}}. \] Now we can approximate the integral using the left-hand Riemann sum: \[ \text{Left Hand Sum} \approx \Delta x \times (f(4) + f(5) + f(6) + f(7) + f(8)). \] Calculating each function value (rounded): - \( f(4) = -0.5 \) - \( f(5) \approx \frac{1 - 2.236}{2.236} \approx -0.110 \) - \( f(6) \approx \frac{1 - 2.449}{2.449} \approx -0.595 \) - \( f(7) \approx \frac{1 - 2.646}{2.646} \approx -0.622 \) - \( f(8) \approx \frac{1 - 2.828}{2.828} \approx -0.646 \) Now adding these values together: \[ -0.5 - 0.110 - 0.595 - 0.622 - 0.646 \approx -2.473. \] Now, multiply the sum by \( \Delta x = 1 \): \[ \text{Integral} \approx 1 \times (-2.473) = -2.473. \] Rounding to the nearest thousandth, we have: \[ \boxed{-2.473}. \]
