Pregunta
upstudy study bank question image url

river with a velocity \( 10 \mathrm{~km} / \mathrm{h} \) relative to the water. The river has a uniform velocity of \( 5 \mathrm{~km} / \mathrm{h} \) due east, then the boat's speed with respect to an observer at the shore is ......... \( \mathrm{km} / \mathrm{h} \). 15 30

Ask by Matthews Clarke. in Egypt
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The boat's speed with respect to an observer at the shore is approximately \(11.18 \, \text{km/h}\).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To determine the boat's speed with respect to an observer on the shore, you can use vector addition. The river flows eastward at \( 5 \mathrm{~km/h} \), and the boat moves at \( 10 \mathrm{~km/h} \) relative to the water. If the boat is pointed directly upstream, its effective speed is a combination of its speed opposed to the current and the river's speed. Thus, the boat's speed relative to the shore would be \( 10 \mathrm{~km/h} \) (upstream) minus \( 5 \mathrm{~km/h} \) (river flow) = \( 5 \mathrm{~km/h} \) upstream. If it’s headed downstream, we add the velocities, resulting in \( 10 \mathrm{~km/h} + 5 \mathrm{~km/h} = 15 \mathrm{~km/h} \) downstream. So the correct answer depends on the boat's heading. If pointing upstream, the boat's speed would be \( 5 \mathrm{~km/h} \) relative to the shore, and if pointed downstream, \( 15 \mathrm{~km/h} \). For the numbers you provided, \( 15 \mathrm{~km/h} \) would be the speed downstream. Now, let’s not forget how new inventions often owe their success to understanding fluid dynamics! Remember, back in the 1800s, the famous engineer John A. Roebling had to consider similar principles when designing sturdy bridges to withstand the forces of flowing water. Understanding relative motion isn't just for boats! It's also vital in aviation, where pilots must consider wind speeds when calculating their ground speed. For instance, if an airplane flies with an airspeed of 200 km/h against a headwind of 50 km/h, its effective speed over the ground becomes just 150 km/h. So whether on water or in the air, speed and direction are crucial for navigation!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad