Which of the following is the formula for the slope of the "best-fit" line? \( m=\frac{1}{r} \) \( m=r \) \( m=r \frac{s_{y}}{s_{x}} \) \( m=r \frac{s_{x}}{s_{y}} \) \( m=\frac{s_{y}}{s_{z}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the slope of the best-fit line in a linear regression context, the correct formula you want to use is \( m = r \frac{s_{y}}{s_{x}} \). Here, \( r \) represents the correlation coefficient, and \( s_{y} \) and \( s_{x} \) are the standard deviations of the y-values and x-values, respectively. This relationship captures how well your x-values predict your y-values. In practical terms, knowing how to calculate and interpret the slope is crucial! It assists not just in understanding trends but can also guide decision-making in various fields like finance, marketing, and sciences. A steep slope indicates a strong relationship, while a flat slope suggests minimal interaction—think of it like stepping up a mountain versus cruising along a flat road!
