\( \sin \theta=-\frac{\sqrt{3}}{3}, \frac{3 \pi}{2}<\theta<2 \pi \) Find \( \sin (2 \theta) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve for \( \sin(2\theta) \) when \( \sin \theta = -\frac{\sqrt{3}}{3} \) and \( \frac{3 \pi}{2} < \theta < 2 \pi \), we first need to determine \( \theta \). Given that \( \sin \theta = -\frac{\sqrt{3}}{3} \), we know this occurs at angles in the fourth quadrant. The reference angle corresponding to \( \sin^{-1} \left(-\frac{\sqrt{3}}{3}\right) \) is \( \frac{\pi}{6} \). Hence, in the fourth quadrant, the value of \( \theta \) can be expressed as: \[ \theta = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6} \] Next, we can find \( \sin(2\theta) \) using the double angle identity for sine, which is given by: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] We already have \( \sin \theta = -\frac{\sqrt{3}}{3} \). To find \( \cos \theta \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting for \( \sin \theta \): \[ \left(-\frac{\sqrt{3}}{3}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{3}{9} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] Since \( \theta \) is in the fourth quadrant, \( \cos \theta \) is positive: \[ \cos \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Now substituting back into the double angle formula: \[ \sin(2\theta) = 2 \left(-\frac{\sqrt{3}}{3}\right) \left(\frac{\sqrt{6}}{3}\right) \] \[ = 2 \left(-\frac{\sqrt{18}}{9}\right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] Thus, the value of \( \sin(2\theta) \) is \[ \boxed{-\frac{2\sqrt{2}}{3}} \]
