Pregunta
upstudy study bank question image url

A poll of 1391 voters asked what the most significant issue was in the upcoming election. 932 of those polled answered the economy. Construct a \( 90 \% \) confidence interval to estimate the proportion of registered voters who feel that the economy is the most significant issue. \( \widehat{p}= \) \( \frac{\alpha}{2}= \) Margin of Error: \( E= \) We are \( 90 \% \) confident that the proportion of voters who feel that the economy is the most significant issue is between (round to 4 decimal places)

Ask by Schultz Deleon. in the United States
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

We are 90% confident that the proportion of voters who feel the economy is the most significant issue is between 0.6483 and 0.6897.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To construct a \( 90\% \) confidence interval for the proportion of registered voters who feel that the economy is the most significant issue, we can follow these steps: 1. **Calculate \(\widehat{p}\):** \[ \widehat{p} = \frac{x}{n} = \frac{932}{1391} \approx 0.6691 \] 2. **Find \(\frac{\alpha}{2}\):** For a \( 90\% \) confidence level, \(\alpha\) is \( 0.10\), thus \(\frac{\alpha}{2} = 0.05\). 3. **Calculate the Margin of Error (E):** First, we find the critical value \( z_{\alpha/2} \) for a \( 90\% \) confidence level, which is approximately \( 1.645 \). Then calculate the standard error (SE): \[ SE = \sqrt{\frac{\widehat{p}(1 - \widehat{p})}{n}} = \sqrt{\frac{0.6691(1 - 0.6691)}{1391}} \approx 0.0270 \] Now calculate the margin of error: \[ E = z_{\alpha/2} \times SE = 1.645 \times 0.0270 \approx 0.0443 \] 4. **Construct the Confidence Interval:** Now we can calculate the confidence interval: \[ \text{Lower limit} = \widehat{p} - E \approx 0.6691 - 0.0443 \approx 0.6248 \] \[ \text{Upper limit} = \widehat{p} + E \approx 0.6691 + 0.0443 \approx 0.7134 \] Therefore, we are \( 90\% \) confident that the proportion of voters who feel that the economy is the most significant issue is between **0.6248 and 0.7134** (rounded to four decimal places). Summary of Answers: \(\widehat{p} = 0.6691\) \(\frac{\alpha}{2} = 0.05\) Margin of Error: \( E = 0.0443 \) We are \( 90 \% \) confident that the proportion of voters who feel that the economy is the most significant issue is between **0.6248 and 0.7134**.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad