Pregunta
upstudy study bank question image url

b) Work out the value of \( x \) that means that the rectangle has the maximum area. If your answer is a decimal, give it to 1 d.p. c) Explain what you notice about the side lengths of this rectangle.

Ask by Tucker Hammond. in the United Kingdom
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To maximize the area of a rectangle with a fixed perimeter, both the length and width should be equal, making the rectangle a square. Therefore, the value of \( x \) that maximizes the area is \( \frac{P}{4} \).

Solución

To solve the problem, we need to find the value of \( x \) that maximizes the area of a rectangle. Let's assume the rectangle has a length \( l \) and a width \( w \), and that the area \( A \) is given by the formula: \[ A = l \cdot w \] ### Step 1: Define the relationship between the dimensions If we have a fixed perimeter \( P \) for the rectangle, we can express one dimension in terms of the other. For example, if the perimeter is given by: \[ P = 2l + 2w \] We can rearrange this to express \( w \) in terms of \( l \): \[ w = \frac{P}{2} - l \] ### Step 2: Substitute into the area formula Now, substituting \( w \) into the area formula gives: \[ A = l \left( \frac{P}{2} - l \right) \] This simplifies to: \[ A = \frac{P}{2}l - l^2 \] ### Step 3: Find the maximum area To find the maximum area, we can take the derivative of \( A \) with respect to \( l \) and set it to zero: \[ \frac{dA}{dl} = \frac{P}{2} - 2l \] Setting the derivative equal to zero: \[ \frac{P}{2} - 2l = 0 \] Solving for \( l \): \[ 2l = \frac{P}{2} \implies l = \frac{P}{4} \] ### Step 4: Find \( w \) Now, substituting \( l \) back into the equation for \( w \): \[ w = \frac{P}{2} - l = \frac{P}{2} - \frac{P}{4} = \frac{P}{4} \] ### Conclusion Thus, both the length and width of the rectangle that maximizes the area are equal: \[ l = w = \frac{P}{4} \] This means that the rectangle is actually a square when the area is maximized. ### Answer to part b The value of \( x \) that maximizes the area is \( \frac{P}{4} \). If \( P \) is known, we can calculate \( x \) and provide it to one decimal place. ### Answer to part c The observation about the side lengths of this rectangle is that they are equal when the area is maximized, indicating that the rectangle is a square. This is a general property of rectangles: for a given perimeter, the square has the maximum area.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To maximize the area of a rectangle with a given perimeter, you can use the formula for area \( A = x(12 - 2x) \), where \( x \) is the length of one side and \( 12 - 2x \) is the length of the other side. By finding the vertex of this quadratic function, you can determine that the maximum area occurs at \( x = 3 \). Plugging this back in gives the dimensions as 3 and 6, so the maximum area is 18 square units. Notice that the rectangle approaches a square shape when the area is maximized; in this case, one side is half of the length of the perimeter divided by 2, leading to side lengths of 3 and 6. This relationship demonstrates that for optimal areas, rectangles often become squares as their dimensions equalize.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad