\( \left.|\leftarrow| \frac{w+4}{2} \right\rvert\,+3<9 \)
Find the solution set for the following inequality.
Select the correct choice below and, if necessary, fill in the answer box to comp
A. The solution set is \( \{w \mid \square\square\} \).
(Simplify your answers.)
C. The solution is all real numbers.
D. The solution is the empty set.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let’s solve the inequality step-by-step.
Starting with the inequality:
\[
\left|\frac{w+4}{2}\right| + 3 < 9
\]
First, we simplify by subtracting 3 from both sides:
\[
\left|\frac{w+4}{2}\right| < 6
\]
Now, we can break this absolute value inequality into two cases:
1. \(\frac{w+4}{2} < 6\)
2. \(\frac{w+4}{2} > -6\)
**For the first case:**
\[
\frac{w+4}{2} < 6
\]
Multiply both sides by 2:
\[
w + 4 < 12
\]
Subtract 4 from both sides:
\[
w < 8
\]
**For the second case:**
\[
\frac{w+4}{2} > -6
\]
Multiply both sides by 2:
\[
w + 4 > -12
\]
Subtract 4 from both sides:
\[
w > -16
\]
Now, combining both parts, the solution set is:
\[
-16 < w < 8
\]
So the correct answer is:
A. The solution set is \( \{w \mid -16