Pregunta
upstudy study bank question image url

Match each exponential function to its graph.

Ask by Crawford Sullivan. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • decreases and has a horizontal asymptote at .
  • increases and has a horizontal asymptote at .
  • increases and has a horizontal asymptote at .
  • decreases and has a horizontal asymptote at .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To match each exponential function to its graph, we can analyze the properties and transformations of each function.
  1. d(x) = 3(1/4)^(x-2) - 5: This function represents a decreasing exponential function because the base (1/4) is less than 1. It is shifted to the right by 2 units and downwards by 5. The graph will approach -5 as x approaches infinity.
  2. s(x) = 3(4)^(x+2) - 5: This function is an increasing exponential function since the base (4) is greater than 1. It is shifted to the left by 2 units and downwards by 5. The graph will approach -5 as x approaches negative infinity.
  3. z(x) = 3(4)^(x+2) + 5: Similar to s(x), this function is also increasing with the same base. However, it has been shifted upwards by 5, so as x approaches negative infinity, the graph will approach 5.
  4. p(x) = 3(1/4)^(x-2) + 5: Like d(x), this function is decreasing due to the base being less than 1, but it’s shifted upwards by 5. Its graph will approach 5 as x approaches infinity.
Based on these transformations, you can then observe the graphs accordingly to match them. Generally, increasing functions will rise steeply in one direction, while decreasing functions will fall off instead. Also, note the horizontal shifts and vertical displacements.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad