Pregunta
upstudy study bank question image url

12. Each of equal sides of an isosceles triangle is 4 cm greater than its height. If the base of the triangle is 24 cm ; calculate the perimeter and the area of the triangle.

Ask by Chavez Moreno. in India
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Each equal side is 20 cm. The perimeter is 64 cm, and the area is 192 cm².

Solución

Let the height of the triangle be h cm. According to the problem, each of the equal sides is 4 cm more than the height. Thus, each equal side is (h + 4) cm. Since the triangle is isosceles and the height is drawn to the base (which is 24 cm), the altitude divides the base into two equal parts of 12 cm each. This forms a right triangle with:  • one leg = h (the height),  • the other leg = 12 cm (half the base),  • and the hypotenuse = (h + 4) cm (the equal side). Using the Pythagorean theorem:  (h + 4)² = h² + 12² Expanding and solving:  h² + 8h + 16 = h² + 144  8h + 16 = 144  8h = 128  h = 16 cm Now, each equal side is:  h + 4 = 16 + 4 = 20 cm Perimeter of the triangle:  Base + 2 × (equal side) = 24 + 2 × 20 = 24 + 40 = 64 cm Area of the triangle:  Area = ½ × base × height = ½ × 24 × 16 = 192 cm² Final Answer:  Perimeter = 64 cm,  Area = 192 cm².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for the height of the isosceles triangle, let's denote the height as \( h \). According to the problem, each of the equal sides is \( h + 4 \) cm. The base of the triangle is given as 24 cm. By dropping a perpendicular from the apex to the base, you create two right triangles. Each half of the base is \( 12 \) cm (half of 24 cm). Using the Pythagorean theorem, we have: \[ (h + 4)^2 = h^2 + 12^2 \] Expanding and simplifying gives: \[ h^2 + 8h + 16 = h^2 + 144 \] This simplifies to: \[ 8h + 16 = 144 \] \[ 8h = 128 \quad \Rightarrow \quad h = 16 \, \text{cm} \] Now, substitute \( h \) back to find the lengths of the equal sides: \[ \text{Equal sides} = h + 4 = 16 + 4 = 20 \, \text{cm} \] Now, we can calculate the perimeter: \[ \text{Perimeter} = \text{base} + 2 \times \text{equal sides} = 24 + 2 \times 20 = 64 \, \text{cm} \] Next, let's calculate the area. The area of a triangle can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 24 \times 16 = 192 \, \text{cm}^2 \] Thus, the perimeter of the isosceles triangle is **64 cm** and the area is **192 cm²**.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad