Pre-calculus Questions from Dec 31,2024

Browse the Pre-calculus Q&A Archive for Dec 31,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Linear Speed Find the linear speed for the following. 15. The second hand of a clock is 11.25 centimeters long. Find the linear speed of the tip of the second hand as it passes around the clock face. 16. The blades of a wind turbine are 85 feet. The propeller rotates at 13 revolutions per minute. Find the linear speed of the tips of the blades. 3 Convert radian \( \leftrightarrow \) degrees \( -372^{\circ} \quad \frac{13 \pi}{20} \) II, Choose the correct answer from the given alternative. (1.5 pts each) 9.If \( =\left\{(x, y): y=x^{2}+1\right\} \) then which one of the following is the range of \( R \) ? A. IR \( \quad \) B. \( [1, \infty) \quad \) C. \( [0, \infty) \) D. IR \( \backslash\{0\} \) 10. The domain of the function \( f(x)=x^{\frac{3}{4}} \) is? \( \begin{array}{llll}\text { A. IR } \backslash 0\} & \text { B. IR } \quad \text { C. }[0, \infty) & \text { D. }(-\infty, 0] \\ \text { 11. If } x=14 \text { then }\lfloor x\rfloor \text { is equal to;- A. } 13 & \text { B. } 14 & \text { C. } 15 & \text { D. } 14\end{array} \) 15. which one of the following is the range of \( f(x)=x^{\frac{-2}{3}} \) ? \( \begin{array}{l}\text { A. IR } \backslash\{0\} \quad B .(0, \infty) \quad C .(-\infty, 0) \quad D . \mathbb{R}\end{array} \) Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \). Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s). QUESTION 3 The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is formed when \( f \) is transformed as follows: \( 3.1 \quad \) Shift two units to the left Mathematics Assignment for Grade 12. December 15/04/2017 E. C. Instructions: - Workout the following problems with the necessary steps with clear and legible handwriting. - Write your group number, full name with their Roll NO. 1. The number of terms in an arithmetic progression is even. The sum of the odd terms is 24. If the sum of even terms is 30 and the last term exceeds the first by \( \frac{21}{2} \), then find the number of terms. 2. If \( a^{2}+b^{2}, a b+b c \) and \( b^{2}+c^{2} \) are in geometric progression, prove that \( a, b, c \) are also in geometric progression. 3. Let \( f(x)=\left\{\begin{aligned} 4 x, & x \geq 3 \\ x^{2}+3, & x<3\end{aligned}\right. \), find the equation of the tangent line and the normal line to the graph of \( f \) at the point \( (4,16) \). 4. Find the maximum possible area of an isosceles triangle whose perimeter is 6 m . 5. Given \( f(x)=\sqrt{12-x-x^{2}},[-4,3] \) find: a) absolute maximum. b) dbsotute-minimum. 25 exponentielle: \( \begin{array}{lll}\text { a. } 4 \sqrt{2} e^{i \frac{\pi}{4}} & \text { b. } 4 \sqrt{2} e^{i \frac{7 \pi}{4}} & \text { c. } 4 \sqrt{2} e^{i \frac{3 \pi}{4}} \\ \text { 2. Un argument du nombre complexe }-2 e^{i \frac{\pi}{5}} \text { est: } \\ \begin{array}{lll}\text { a. } \frac{7 \pi}{10} & \text { b. }-\frac{4 \pi}{5} & \text { c. }-\frac{3 \pi}{10}\end{array} \\ \begin{array}{lll}\text { 3. On pose } z=3-3 i . L a f o r m e ~ e x p o n e n t i e l l e ~ d e ~ \\ i\end{array} \\ \begin{array}{lll}\text { a. } 3 \sqrt{2} e^{-i \frac{\pi}{4}} & \text { b. } 3 \sqrt{2} e^{-i \frac{3 \pi}{4}} & \text { c. } 3 \sqrt{2} e^{i \frac{\pi}{4}} \\ \text { 4. On pose } z=3+i \sqrt{3} \text {. La forme exponentielle de }-4 z\end{array} \\ \text { est: } & \text { b. } 2 \sqrt{3} e^{i \frac{7 \pi}{6}} & \text { c. } 8 \sqrt{3} e^{-i \frac{5 \pi}{6}}\end{array} \) The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is formed when \( f \) is transformed as follow: \( 3.1 \quad \) Shift two units to the left \( 3.2 \quad \) Shift 3 units up \( 3.3 \quad \) Shift 1 unit right and 2 units down \( 3.4 \quad \) The equation of the new hyperbola has new asymptotes at \( x=-4 \) and \( y=-1 \) QUESTION 4 Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \). Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s). if the domain of \( y=f(x) \) is \( [-2,2] \), whatis the domain of fanction with the rule of \( y=f(\sqrt{x-1}) \)
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad