mplify the expression to \( a+b i \) form: \[ \sqrt{144}-\sqrt{-64}-\sqrt{64}+\sqrt{-49} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Let's break it down step by step to simplify the expression to \( a + b i \) form: 1. Calculate \(\sqrt{144}\): \[ \sqrt{144} = 12 \] 2. Calculate \(\sqrt{-64}\): \[ \sqrt{-64} = \sqrt{64} \cdot \sqrt{-1} = 8i \] 3. Calculate \(\sqrt{64}\): \[ \sqrt{64} = 8 \] 4. Calculate \(\sqrt{-49}\): \[ \sqrt{-49} = \sqrt{49} \cdot \sqrt{-1} = 7i \] Now, put it all together in the expression: \[ \sqrt{144}-\sqrt{-64}-\sqrt{64}+\sqrt{-49} = 12 - 8i - 8 + 7i \] Combine the real parts and the imaginary parts: \[ (12 - 8) + (-8i + 7i) = 4 - i \] Thus, the expression simplifies to: \[ \boxed{4 - i} \]
