Simplify \( \frac{8+\sqrt{6}}{\sqrt{2}} \) \( \frac{\sqrt{2}+4 \sqrt{3}}{4 \sqrt{6}} \) \( 4 \sqrt{2}+\sqrt{3} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To simplify \( \frac{8+\sqrt{6}}{\sqrt{2}} \), we can multiply the numerator and denominator by \( \sqrt{2} \): \[ \frac{(8+\sqrt{6})\sqrt{2}}{(\sqrt{2})(\sqrt{2})} = \frac{8\sqrt{2} + \sqrt{12}}{2} = \frac{8\sqrt{2} + 2\sqrt{3}}{2} = 4\sqrt{2} + \sqrt{3}. \] Now, for \( \frac{\sqrt{2}+4 \sqrt{3}}{4 \sqrt{6}} \), we can simplify by multiplying the numerator and denominator by \( \frac{\sqrt{6}}{\sqrt{6}} \): \[ \frac{(\sqrt{2}+4\sqrt{3})\sqrt{6}}{(4\sqrt{6})(\sqrt{6})} = \frac{\sqrt{12} + 4\sqrt{18}}{24} = \frac{2\sqrt{3} + 12\sqrt{2}}{24} = \frac{\sqrt{3}}{12} + \frac{\sqrt{2}}{2}. \] Thus, we have: 1) \( 4\sqrt{2} + \sqrt{3} \) 2) \( \frac{\sqrt{3}}{12} + \frac{\sqrt{2}}{2} \)
