Pregunta
upstudy study bank question image url

Explain how to sind the value Sor each limit b) \( \lim _{x \rightarrow-\infty} \frac{4 x^{4}-8 x^{6}+9}{6 x+5 x^{5}+2} \)

Ask by Cummings Vaughan. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

As \( x \) approaches negative infinity, the limit of \( \frac{4x^{4} - 8x^{6} + 9}{6x + 5x^{5} + 2} \) is positive infinity.

Solución

We are given the limit   lim₍ₓ→ −∞₎ (4x⁴ − 8x⁶ + 9)⁄(6x + 5x⁵ + 2). Step 1. Identify the highest power in the numerator and denominator. • In the numerator, the highest power is x⁶ (from −8x⁶). • In the denominator, the highest power is x⁵ (from 5x⁵). Step 2. Factor out (or divide by) the highest power in the denominator (x⁵) from both the numerator and denominator. This gives   (4x⁴ − 8x⁶ + 9)⁄(6x + 5x⁵ + 2)   = [ (4x⁴/x⁵) − (8x⁶/x⁵) + (9/x⁵) ]⁄[ (6x/x⁵) + (5x⁵/x⁵) + (2/x⁵) ]   = [ (4/x) − 8x + (9/x⁵) ]⁄[ (6/x⁴) + 5 + (2/x⁵) ]. Step 3. Examine the behavior of each term as x → −∞. • In the numerator:   4/x → 0,   −8x → −8x (this is the dominant term),   9/x⁵ → 0. • In the denominator:   6/x⁴ → 0,   5 remains,   2/x⁵ → 0. So for very large negative x, the expression behaves like   (−8x)⁄5. Step 4. Determine the limit of (−8x)/5 as x → −∞. Since x is approaching –∞, note that (–8x)/5 becomes   (–8/5)×(x). Now, since x is a very large negative number, multiplying it by a negative constant (–8/5) yields a very large positive number. In other words,   lim₍ₓ→ −∞₎ (–8/5)x = +∞. Step 5. Conclude the limit. Thus, the original limit diverges to positive infinity. Answer: The limit is +∞.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the limit as \( x \) approaches negative infinity in the expression \( \frac{4 x^{4}-8 x^{6}+9}{6 x+5 x^{5}+2} \), you should first identify the term with the highest degree in both the numerator and the denominator. In the numerator, the dominating term is \( -8 x^{6} \), and in the denominator, it is \( 5 x^{5} \). Next, divide all terms in the numerator and the denominator by \( x^{6} \), yielding \( \frac{4/x^{2} - 8 + 9/x^{6}}{6/x^{5} + 5 + 2/x^{6}} \). As \( x \) approaches negative infinity, the terms with \( 1/x^{n} \) where \( n > 0 \) will approach zero. Thus, the limit simplifies to \( \frac{-8}{5} \), which equals \( -\frac{8}{5} \) as \( x \) goes to negative infinity. This tells us that the polynomial growth in the negative direction directly influences the limit. For a solid understanding of limits, practice with a variety of rational functions where you can apply similar principles. Exploring common types, like polynomials or exponential functions, helps build confidence and identifies the dominant terms faster. Analyzing limits can become intuitive with time, so play around with different types of functions to see the behavior as \( x \) approaches positive and negative infinity!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad