(b) Use implicit differentiation to find \( \frac{\partial z}{\partial y} \) for \[ x e^{2 z}+x=\ln (x)+2 y^{2} z+e \] at \( (x, y, z)=(1,1,1 / 2) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find \( \frac{\partial z}{\partial y} \) using implicit differentiation for the equation: \[ x e^{2 z} + x = \ln (x) + 2 y^{2} z + e, \] we’ll differentiate both sides with respect to \( y \), treating \( z \) as a function of \( y \). Starting with the left side: \[ \frac{\partial}{\partial y}(x e^{2 z}) + \frac{\partial}{\partial y}(x) = 0 + 0 = 0, \] where we keep \( x \) constant. Now for the right side: \[ \frac{\partial}{\partial y}(\ln(x)) + \frac{\partial}{\partial y}(2y^2 z) + \frac{\partial}{\partial y}(e) = 0 + \left(4yz + 2y^2 \frac{\partial z}{\partial y}\right) + 0. \] Setting both sides equal: \[ 0 = 4yz + 2y^2 \frac{\partial z}{\partial y}. \] Now we can solve for \( \frac{\partial z}{\partial y} \): \[ 2y^2 \frac{\partial z}{\partial y} = -4yz \quad \Rightarrow \quad \frac{\partial z}{\partial y} = -\frac{4y}{2y^2} = -\frac{2}{y} \quad \text{(for } y \neq 0\text{)}. \] Next, we evaluate \( \frac{\partial z}{\partial y} \) at the point \( (x, y, z)=(1,1,1/2) \): \[ \frac{\partial z}{\partial y} \bigg|_{(1,1,1/2)} = -\frac{2}{1} = -2. \] Thus, the final answer is: \[ \frac{\partial z}{\partial y} = -2. \]
