Pregunta
upstudy study bank question image url

If money can be invested at \( 5.8 \% \) compounded quarterly, which is larger, \( \$ 3855 \) now or \( \$ 6000 \) in 8 years? Use present value to decide. The present value of \( \$ 6000 \) in 8 years is \( \$ \) round to the nearest cent as needed.) (Do not round until the final answer. Then round

Ask by Norris Potter. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The present value of \$6000 in 8 years is \$3785.17. Since \$3855 is larger than \$3785.17, \$3855 now is larger than \$6000 in 8 years.

Solución

To determine which amount is larger, we need to calculate the present value (PV) of \( \$6000 \) that will be received in 8 years, given an interest rate of \( 5.8\% \) compounded quarterly. ### Step 1: Identify the known values - Future Value (FV) = \( 6000 \) - Interest Rate (r) = \( 5.8\% = 0.058 \) - Number of compounding periods per year (n) = \( 4 \) (quarterly) - Time in years (t) = \( 8 \) ### Step 2: Use the present value formula The present value formula for compound interest is given by: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] ### Step 3: Substitute the known values into the formula Now we will substitute the values into the formula: \[ PV = \frac{6000}{(1 + \frac{0.058}{4})^{4 \times 8}} \] ### Step 4: Calculate the present value Let's perform the calculations step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.058}{4} = 0.0145 \] 2. Calculate \( nt \): \[ 4 \times 8 = 32 \] 3. Calculate \( (1 + \frac{r}{n})^{nt} \): \[ (1 + 0.0145)^{32} \] 4. Finally, calculate the present value \( PV \). Now, I will perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{6000}{\left(1+0.0145\right)^{32}}\) - step1: Add the numbers: \(\frac{6000}{1.0145^{32}}\) - step2: Convert the expressions: \(\frac{6000}{\left(\frac{2029}{2000}\right)^{32}}\) - step3: Simplify the expression: \(\frac{6000}{\frac{2029^{32}}{2000^{32}}}\) - step4: Rewrite the expression: \(\frac{6000\times 2000^{32}}{2029^{32}}\) The present value (PV) of \( \$6000 \) in 8 years, calculated using the formula, is approximately \( 3785.17 \). ### Step 5: Compare the present values Now we compare the present value of \( \$6000 \) with \( \$3855 \): - Present Value of \( \$6000 \) in 8 years: \( \$3785.17 \) - Current amount: \( \$3855 \) ### Conclusion Since \( 3855 > 3785.17 \), \( \$3855 \) now is larger than \( \$6000 \) in 8 years. Thus, the present value of \( \$6000 \) in 8 years is \( \$3785.17 \) (rounded to the nearest cent).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the present value of \( \$ 6000 \) received in 8 years, we can use the present value formula for compound interest: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \( FV = 6000 \) (future value) - \( r = 5.8\% = 0.058 \) (annual interest rate) - \( n = 4 \) (number of times interest is compounded per year) - \( t = 8 \) (number of years) Now, substituting the values into the formula: \[ PV = \frac{6000}{\left(1 + \frac{0.058}{4}\right)^{4 \times 8}} \] Calculating \( r/n \): \[ r/n = \frac{0.058}{4} = 0.0145 \] Now calculating \( nt \): \[ nt = 4 \times 8 = 32 \] Putting it all together: \[ PV = \frac{6000}{\left(1 + 0.0145\right)^{32}} = \frac{6000}{(1.0145)^{32}} \] Calculating \( (1.0145)^{32} \): \[ (1.0145)^{32} \approx 1.615167901 \] Now plug that back into the formula for present value: \[ PV \approx \frac{6000}{1.615167901} \approx 3705.199654 \] Rounding to the nearest cent, the present value of \( \$ 6000 \) in 8 years is: \[ PV \approx \$ 3705.20 \] Since \( \$ 3855 \) now is larger than \( \$ 3705.20 \), \( \$ 3855 \) today is the better option.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad