Pregunta
upstudy study bank question image url

Find the range of the quadratic function and the maximum or minimum value of the function. Identify the intervals on which the function is increasing or decreasing. \( y=(x-6)^{2}-3 \)

Ask by Guzman Gross. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( y = (x - 6)^2 - 3 \) has a minimum value of -3 at x = 6. Its range is all y values greater than or equal to -3. The function decreases for x < 6 and increases for x > 6.

Solución

The given function is   y = (x - 6)² - 3 This is in the vertex form y = a(x - h)² + k where (h, k) is the vertex. 1. Minimum or Maximum Value:  • Since the coefficient of (x - 6)² is positive (a = 1), the parabola opens upward.  • This means the function has a minimum value.  • The minimum value occurs at the vertex. Here, the vertex is (6, -3).  • Therefore, the minimum value is y = -3 at x = 6. There is no maximum value because the function increases without bound. 2. Range:  • Because the minimum value is -3 and the function extends to infinity, the range of y is:   y ∈ [-3, ∞) 3. Intervals of Increase and Decrease:  • For x < 6: As x approaches 6 from the left, the value of (x - 6)² decreases. Therefore, the function is decreasing.  • For x > 6: As x increases from 6, the value of (x - 6)² increases. Therefore, the function is increasing. In summary: • The minimum value is -3 at x = 6. • The range is [-3, ∞). • The function is decreasing on (–∞, 6] and increasing on [6, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

This quadratic function is in vertex form, \( y = a(x-h)^2 + k \), where \( (h, k) \) is the vertex. For the function \( y = (x-6)^2 - 3 \), the vertex is at \( (6, -3) \). Since the coefficient of \( (x-6)^2 \) is positive, the parabola opens upwards. This means that the minimum value of the function is \( -3 \) at \( x = 6 \). The range of the quadratic function is \( y \geq -3 \). To determine the intervals of increase or decrease, note that the function decreases until the vertex and increases afterward. Thus, the function is decreasing on the interval \( (-\infty, 6) \) and increasing on \( (6, \infty) \). Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad