Responder
Here are the simplified evaluations of the integrals using double-angle formulas:
97. \( \int_{0}^{\pi} \sin ^{2} x \, dx = \frac{\pi}{2} \)
98. \( \int_{0}^{\pi} \sin ^{4} x \, dx = C \) (where \( C \) is a constant)
99. \( \int \cos ^{2} 3x \, dx = \frac{x}{2} + \frac{1}{12} \sin(6x) + C \)
100. \( \int \sin ^{2} x \cos ^{2} x \, dx = \frac{x}{8} - \frac{1}{32} \sin(4x) + C \)
Solución
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int_{0}^{\pi } \sin^{2}\left(x\right) dx\)
- step1: Evaluate the integral:
\(\int \sin^{2}\left(x\right) dx\)
- step2: Evaluate the integral:
\(\frac{x}{2}-\frac{\sin\left(2x\right)}{4}\)
- step3: Simplify the expression:
\(\frac{x}{2}-\frac{1}{4}\sin\left(2x\right)\)
- step4: Return the limits:
\(\left(\frac{x}{2}-\frac{1}{4}\sin\left(2x\right)\right)\bigg |_{0}^{\pi }\)
- step5: Calculate the value:
\(\frac{\pi }{2}\)
Calculate the integral \( \int \sin ^{2} x \cos ^{2} x \, dx \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \sin^{2}\left(x\right)\cos^{2}\left(x\right) dx\)
- step1: Multiply the terms:
\(\int \left(\sin\left(x\right)\cos\left(x\right)\right)^{2} dx\)
- step2: Rewrite the expression:
\(\int \frac{1}{4}\sin^{2}\left(2x\right) dx\)
- step3: Use properties of integrals:
\(\frac{1}{4}\times \int \sin^{2}\left(2x\right) dx\)
- step4: Evaluate the integral:
\(\frac{1}{4}\left(\frac{x}{2}-\frac{\sin\left(2\times 2x\right)}{4\times 2}\right)\)
- step5: Simplify:
\(\frac{1}{4}\left(\frac{x}{2}-\frac{1}{8}\sin\left(4x\right)\right)\)
- step6: Use the distributive property:
\(\frac{1}{4}\times \frac{x}{2}+\frac{1}{4}\left(-\frac{1}{8}\sin\left(4x\right)\right)\)
- step7: Multiply the terms:
\(\frac{x}{8}+\frac{1}{4}\left(-\frac{1}{8}\sin\left(4x\right)\right)\)
- step8: Multiply the terms:
\(\frac{x}{8}-\frac{1}{32}\sin\left(4x\right)\)
- step9: Add the constant of integral C:
\(\frac{x}{8}-\frac{1}{32}\sin\left(4x\right) + C, C \in \mathbb{R}\)
Calculate the integral \( \int \cos ^{2} 3 x \, dx \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \cos^{2}\left(3x\right) dx\)
- step1: Evaluate the integral:
\(\frac{x}{2}+\frac{\sin\left(2\times 3x\right)}{4\times 3}\)
- step2: Multiply the terms:
\(\frac{x}{2}+\frac{\sin\left(6x\right)}{4\times 3}\)
- step3: Multiply the numbers:
\(\frac{x}{2}+\frac{\sin\left(6x\right)}{12}\)
- step4: Simplify the expression:
\(\frac{x}{2}+\frac{1}{12}\sin\left(6x\right)\)
- step5: Add the constant of integral C:
\(\frac{x}{2}+\frac{1}{12}\sin\left(6x\right) + C, C \in \mathbb{R}\)
Calculate the integral \( \int_{0}^{\pi} \sin ^{4} x \, dx \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int_{0}^{\pi } \sin^{4}\left(x\right) dx\)
- step1: Evaluate the integral:
\(\int \sin^{4}\left(x\right) dx\)
- step2: Evaluate the integral:
\(-\frac{\sin^{4-1}\left(x\right)\cos\left(x\right)}{4}+\frac{4-1}{4}\times \int \sin^{4-2}\left(x\right) dx\)
- step3: Subtract the numbers:
\(-\frac{\sin^{3}\left(x\right)\cos\left(x\right)}{4}+\frac{4-1}{4}\times \int \sin^{4-2}\left(x\right) dx\)
- step4: Subtract the numbers:
\(-\frac{\sin^{3}\left(x\right)\cos\left(x\right)}{4}+\frac{4-1}{4}\times \int \sin^{2}\left(x\right) dx\)
- step5: Subtract the numbers:
\(-\frac{\sin^{3}\left(x\right)\cos\left(x\right)}{4}+\frac{3}{4}\times \int \sin^{2}\left(x\right) dx\)
- step6: Simplify the expression:
\(-\frac{1}{4}\sin^{3}\left(x\right)\cos\left(x\right)+\frac{3}{4}\times \int \sin^{2}\left(x\right) dx\)
- step7: Evaluate the integral:
\(-\frac{1}{4}\sin^{3}\left(x\right)\cos\left(x\right)+\frac{3}{4}\left(\frac{x}{2}-\frac{1}{4}\sin\left(2x\right)\right)\)
- step8: Multiply the terms:
\(-\frac{1}{4}\sin^{3}\left(x\right)\cos\left(x\right)+\frac{3x}{8}-\frac{3}{16}\sin\left(2x\right)\)
- step9: Return the limits:
\(\left(-\frac{1}{4}\sin^{3}\left(x\right)\cos\left(x\right)+\frac{3x}{8}-\frac{3}{16}\sin\left(2x\right)\right)\bigg |_{0}^{\pi }\)
- step10: Calculate the value:
\(\frac{3\pi }{8}\)
- step11: Add the constant of integral C:
\(C, C \in \mathbb{R}\)
Here are the evaluations of the integrals using double-angle formulas:
97. For the integral \( \int_{0}^{\pi} \sin ^{2} x \, dx \):
\[
\int_{0}^{\pi} \sin ^{2} x \, dx = \frac{\pi}{2}
\]
98. For the integral \( \int_{0}^{\pi} \sin ^{4} x \, dx \):
\[
\int_{0}^{\pi} \sin ^{4} x \, dx = C, \quad C \in \mathbb{R}
\]
(Note: The result is a constant, which typically indicates that the integral is evaluated over a specific range.)
99. For the integral \( \int \cos ^{2} 3x \, dx \):
\[
\int \cos ^{2} 3x \, dx = \frac{x}{2} + \frac{1}{12} \sin(6x) + C, \quad C \in \mathbb{R}
\]
100. For the integral \( \int \sin ^{2} x \cos ^{2} x \, dx \):
\[
\int \sin ^{2} x \cos ^{2} x \, dx = \frac{x}{8} - \frac{1}{32} \sin(4x) + C, \quad C \in \mathbb{R}
\]
These results utilize the double-angle identities to simplify the integrals.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución