Pregunta
upstudy study bank question image url

Problem 5 ( 10 points). The height of fifth-grade students in elementary school are normally distributed with mean ( \( \mu \) ) equal to 48 inches and a standard deviation equal to 2.8 inches. How tall in inches would a fifth-grade student need to be to have a height at the 91 st percentile? \( 0.90 \rightarrow 2 \) scole table 0.90

Ask by Reid Lambert. in the United States
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The height at the 91st percentile is approximately 51.75 inches.

Solución

To find the height at the 91st percentile for fifth-grade students in elementary school, we need to use the standard normal distribution table. Given: - Mean (\( \mu \)) = 48 inches - Standard deviation (\( \sigma \)) = 2.8 inches - We want to find the height at the 91st percentile The z-score corresponding to the 91st percentile can be found using the standard normal distribution table. The z-score for the 91st percentile is approximately 1.34. The formula to convert a z-score back to the original height is: \[ x = \mu + z \times \sigma \] Substitute the values: \[ x = 48 + 1.34 \times 2.8 \] Now, we can calculate the height at the 91st percentile. Calculate the value by following steps: - step0: Calculate: \(48+1.34\times 2.8\) - step1: Multiply the numbers: \(48+3.752\) - step2: Add the numbers: \(51.752\) The height at the 91st percentile for fifth-grade students in elementary school is approximately 51.75 inches.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the height corresponding to the 91st percentile in a normally distributed dataset, we first need to determine the Z-score that corresponds to the 91st percentile. Looking up the value in the Z-table, we find that a Z-score of approximately 1.34 corresponds to the 91st percentile (as it is slightly above 0.90). Now, we can use the Z-score formula to find the height \( X \): \[ Z = \frac{X - \mu}{\sigma} \] Substituting the known values: \[ 1.34 = \frac{X - 48}{2.8} \] Rearranging gives: \[ X - 48 = 1.34 \times 2.8 \] Calculating \( 1.34 \times 2.8 = 3.752 \): \[ X - 48 = 3.752 \] Thus, adding 48 to both sides gives: \[ X = 48 + 3.752 = 51.752 \] So, a fifth-grade student would need to be approximately **51.75 inches tall** to be at the 91st percentile.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad