\( \overline{S T} \) has endpoints at \( S(8,-18) \) and \( T(-10,20) \). Find the midpoint \( M \) of \( \overline{S T} \). Write the coordinates as decimals or integers. \( M=(\square, \square) \) Submit
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the midpoint \( M \) of the line segment \( \overline{S T} \) with endpoints \( S(8,-18) \) and \( T(-10,20) \), you can use the midpoint formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] Where \( (x_1, y_1) = S(8, -18) \) and \( (x_2, y_2) = T(-10, 20) \): Calculating the x-coordinate of \( M \): \[ \frac{8 + (-10)}{2} = \frac{8 - 10}{2} = \frac{-2}{2} = -1 \] Calculating the y-coordinate of \( M \): \[ \frac{-18 + 20}{2} = \frac{-18 + 20}{2} = \frac{2}{2} = 1 \] Thus, the coordinates of the midpoint \( M \) are: \[ M = (-1, 1) \] So, the final answer is \( M=(-1, 1) \).
