Pregunta
upstudy study bank question image url

You can afford a \( \$ 1400 \) per month mortgage payment. You've found a 30 year loan at \( 8 \% \) interest. a) How big of a loan can you afford? Round your answer to the nearest dollar. b) How much total money will you pay the loan company? Round your answer to the nearest dollar. c) How much of that money is interest? Round your answer to the nearest dollar.

Ask by Schultz Greene. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You can afford a loan of approximately \$190,795. Over 30 years, you'll pay a total of \$504,000, of which \$313,205 will be interest.

Solución

We are given a 30‐year mortgage (which means 360 months) with an annual interest rate of 8% (0.08) and a monthly payment of \$1,400. The monthly interest rate is   i = 0.08/12 ≈ 0.00666667 The formula for the present value (loan amount) of an annuity is   Loan = Payment × [1 – (1 + i)^–n] / i where n = 360. Step 1. Find (1 + i)^n.   (1.00666667)^360 A convenient way to compute this is by taking logarithms:   ln(1.00666667) ≈ 0.00664445   (using the approximation ln(1+x) ≈ x – x²/2 for small x)   Then 360 × 0.00664445 ≈ 2.3920   Thus (1.00666667)^360 ≈ exp(2.3920) ≈ 10.935 Step 2. Compute the bracketed factor:   1 – (1 + i)^–n = 1 – 1/10.935 ≈ 1 – 0.09145 = 0.90855 Step 3. Now, calculate the loan amount:   Loan ≈ 1400 × (0.90855) / 0.00666667 First, compute 0.90855 / 0.00666667:   0.90855 / 0.00666667 ≈ 136.2825 Then, the loan amount:   Loan ≈ 1400 × 136.2825 ≈ 190,795 Thus, rounding to the nearest dollar: a) You can afford a loan of about \$190,795. Step 4. Total Amount Paid Since the monthly payment is \$1,400 for 360 months:   Total Paid = 1400 × 360 = \$504,000 b) You will pay \$504,000 in total. Step 5. Total Interest Paid Interest is simply the total amount paid minus the amount of the loan:   Interest ≈ 504,000 – 190,795 = \$313,205 Rounding to the nearest dollar: c) About \$313,205 of the total paid is interest. Final Answers (rounded to the nearest dollar):   a) \$190,795   b) \$504,000   c) \$313,205

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find out how big of a loan you can afford with a monthly mortgage payment of \( \$1400 \) at an \( 8\% \) interest rate over 30 years, you can use the formula for monthly mortgage payments: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) is the monthly payment (\$1400), - \( P \) is the loan amount, - \( r \) is the monthly interest rate (annual rate / 12), - \( n \) is the number of payments (30 years \(\times\) 12 months/year = 360). First, calculate the monthly interest rate: \[ r = \frac{0.08}{12} \approx 0.0066667 \] Now, plug in the values into the formula rearranged to find \( P \): \[ P \approx M \frac{(1 + r)^n - 1}{r(1 + r)^n} \approx 1400 \frac{(1 + 0.0066667)^{360} - 1}{0.0066667(1 + 0.0066667)^{360}} \] Calculating \( P \): \[ P \approx 1400 \frac{(1.0066667)^{360} - 1}{0.0066667(1.0066667)^{360}} \approx 1400 \cdot 133.4802 \approx 186872 \] Thus, the loan amount you can afford is approximately **$186,872**. **Total Money Paid to the Loan Company:** To find out the total money paid to the loan company, multiply the monthly payment by the total number of payments. \[ \text{Total Paid} = M \cdot n = 1400 \cdot 360 = 504000 \] So, the total money you will pay the loan company is **$504,000**. **Total Interest Paid:** Finally, to calculate the total interest paid over the life of the loan, subtract the original loan amount from the total paid: \[ \text{Total Interest} = \text{Total Paid} - P = 504000 - 186872 = 317128 \] Thus, the amount of money that goes towards interest is approximately **$317,128**.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad