Pregunta
upstudy study bank question image url

Present value with periodic rates. Cooley Landscaping needs to borrow \( \$ 26,000 \) for a new front-end dirt loader. The bank is willing to loan the money at \( 7 \% \) interest for the next 7 years with annual, semiannual, quarterly, or monthly payments. What are the different payments that Cooley Landscaping could choose for these different payment plans? What is Cooley's payment for the loan at \( 7 \% \) interest for the next 7 years with annual payments? \( \$ \square \) (Round to the nearest cent.)

Ask by Dawson Mccoy. in the United States
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Cooley Landscaping's annual payment for a \$26,000 loan at 7% interest over 7 years is \$140,121.52.

Solución

To find the different payments that Cooley Landscaping could choose for the different payment plans, we need to calculate the present value of the loan using the formula for present value with periodic rates. The formula for present value with periodic rates is given by: \[ PV = \frac{PMT}{r} \left( 1 - \left(1 + \frac{r}{n}\right)^{-nt} \right) \] Where: - \( PV \) is the present value of the loan - \( PMT \) is the periodic payment - \( r \) is the annual interest rate - \( n \) is the number of times the interest is compounded per year - \( t \) is the number of years Given: - \( PV = \$26,000 \) - \( r = 7\% = 0.07 \) - \( t = 7 \) years We need to calculate the present value for different payment plans: 1. Annual payments 2. Semiannual payments 3. Quarterly payments 4. Monthly payments Let's calculate the present value for each payment plan. Calculate the value by following steps: - step0: Calculate: \(\frac{26000\left(1-\left(1+\frac{0.07}{1}\right)^{-7}\right)}{\left(\frac{0.07}{1}\right)}\) - step1: Remove the parentheses: \(\frac{26000\left(1-\left(1+\frac{0.07}{1}\right)^{-7}\right)}{\frac{0.07}{1}}\) - step2: Divide the terms: \(\frac{26000\left(1-\left(1+\frac{7}{100}\right)^{-7}\right)}{\frac{0.07}{1}}\) - step3: Add the numbers: \(\frac{26000\left(1-\left(\frac{107}{100}\right)^{-7}\right)}{\frac{0.07}{1}}\) - step4: Subtract the numbers: \(\frac{26000\times \frac{107^{7}-100^{7}}{107^{7}}}{\frac{0.07}{1}}\) - step5: Divide the terms: \(\frac{26000\times \frac{107^{7}-100^{7}}{107^{7}}}{\frac{7}{100}}\) - step6: Multiply the numbers: \(\frac{\frac{26000\times 107^{7}-26000\times 100^{7}}{107^{7}}}{\frac{7}{100}}\) - step7: Multiply by the reciprocal: \(\frac{26000\times 107^{7}-26000\times 100^{7}}{107^{7}}\times \frac{100}{7}\) - step8: Multiply the fractions: \(\frac{\left(26000\times 107^{7}-26000\times 100^{7}\right)\times 100}{107^{7}\times 7}\) - step9: Multiply: \(\frac{2600000\times 107^{7}-2600000\times 100^{7}}{107^{7}\times 7}\) The present value for annual payments is approximately $140,121.52. Now, let's calculate the present value for semiannual payments. Calculate the value by following steps: - step0: Calculate: \(\frac{26000\left(1-\left(1+\frac{0.07}{2}\right)^{-2\times 7}\right)}{\left(\frac{0.07}{2}\right)}\) - step1: Remove the parentheses: \(\frac{26000\left(1-\left(1+\frac{0.07}{2}\right)^{-2\times 7}\right)}{\frac{0.07}{2}}\) - step2: Divide the terms: \(\frac{26000\left(1-\left(1+\frac{7}{200}\right)^{-2\times 7}\right)}{\frac{0.07}{2}}\) - step3: Add the numbers: \(\frac{26000\left(1-\left(\frac{207}{200}\right)^{-2\times 7}\right)}{\frac{0.07}{2}}\) - step4: Multiply the numbers: \(\frac{26000\left(1-\left(\frac{207}{200}\right)^{-14}\right)}{\frac{0.07}{2}}\) - step5: Subtract the numbers: \(\frac{26000\times \frac{207^{14}-200^{14}}{207^{14}}}{\frac{0.07}{2}}\) - step6: Divide the terms: \(\frac{26000\times \frac{207^{14}-200^{14}}{207^{14}}}{\frac{7}{200}}\) - step7: Multiply the numbers: \(\frac{\frac{26000\times 207^{14}-26000\times 200^{14}}{207^{14}}}{\frac{7}{200}}\) - step8: Multiply by the reciprocal: \(\frac{26000\times 207^{14}-26000\times 200^{14}}{207^{14}}\times \frac{200}{7}\) - step9: Multiply the fractions: \(\frac{\left(26000\times 207^{14}-26000\times 200^{14}\right)\times 200}{207^{14}\times 7}\) - step10: Multiply: \(\frac{5200000\times 207^{14}-5200000\times 200^{14}}{207^{14}\times 7}\) The present value for semiannual payments is approximately $283,933.53. Next, let's calculate the present value for quarterly payments. Calculate the value by following steps: - step0: Calculate: \(\frac{26000\left(1-\left(1+\frac{0.07}{4}\right)^{-4\times 7}\right)}{\left(\frac{0.07}{4}\right)}\) - step1: Remove the parentheses: \(\frac{26000\left(1-\left(1+\frac{0.07}{4}\right)^{-4\times 7}\right)}{\frac{0.07}{4}}\) - step2: Divide the terms: \(\frac{26000\left(1-\left(1+\frac{7}{400}\right)^{-4\times 7}\right)}{\frac{0.07}{4}}\) - step3: Add the numbers: \(\frac{26000\left(1-\left(\frac{407}{400}\right)^{-4\times 7}\right)}{\frac{0.07}{4}}\) - step4: Multiply the numbers: \(\frac{26000\left(1-\left(\frac{407}{400}\right)^{-28}\right)}{\frac{0.07}{4}}\) - step5: Subtract the numbers: \(\frac{26000\times \frac{407^{28}-400^{28}}{407^{28}}}{\frac{0.07}{4}}\) - step6: Divide the terms: \(\frac{26000\times \frac{407^{28}-400^{28}}{407^{28}}}{\frac{7}{400}}\) - step7: Multiply the numbers: \(\frac{\frac{26000\times 407^{28}-26000\times 400^{28}}{407^{28}}}{\frac{7}{400}}\) - step8: Multiply by the reciprocal: \(\frac{26000\times 407^{28}-26000\times 400^{28}}{407^{28}}\times \frac{400}{7}\) - step9: Multiply the fractions: \(\frac{\left(26000\times 407^{28}-26000\times 400^{28}\right)\times 400}{407^{28}\times 7}\) - step10: Multiply: \(\frac{10400000\times 407^{28}-10400000\times 400^{28}}{407^{28}\times 7}\) The present value for quarterly payments is approximately $571,660.82. Finally, let's calculate the present value for monthly payments. Calculate the value by following steps: - step0: Calculate: \(\frac{26000\left(1-\left(1+\frac{0.07}{12}\right)^{-12\times 7}\right)}{\left(\frac{0.07}{12}\right)}\) - step1: Remove the parentheses: \(\frac{26000\left(1-\left(1+\frac{0.07}{12}\right)^{-12\times 7}\right)}{\frac{0.07}{12}}\) - step2: Divide the terms: \(\frac{26000\left(1-\left(1+\frac{7}{1200}\right)^{-12\times 7}\right)}{\frac{0.07}{12}}\) - step3: Add the numbers: \(\frac{26000\left(1-\left(\frac{1207}{1200}\right)^{-12\times 7}\right)}{\frac{0.07}{12}}\) - step4: Multiply the numbers: \(\frac{26000\left(1-\left(\frac{1207}{1200}\right)^{-84}\right)}{\frac{0.07}{12}}\) - step5: Subtract the numbers: \(\frac{26000\times \frac{1207^{84}-1200^{84}}{1207^{84}}}{\frac{0.07}{12}}\) - step6: Divide the terms: \(\frac{26000\times \frac{1207^{84}-1200^{84}}{1207^{84}}}{\frac{7}{1200}}\) - step7: Multiply the numbers: \(\frac{\frac{26000\times 1207^{84}-26000\times 1200^{84}}{1207^{84}}}{\frac{7}{1200}}\) - step8: Multiply by the reciprocal: \(\frac{26000\times 1207^{84}-26000\times 1200^{84}}{1207^{84}}\times \frac{1200}{7}\) - step9: Multiply the fractions: \(\frac{\left(26000\times 1207^{84}-26000\times 1200^{84}\right)\times 1200}{1207^{84}\times 7}\) - step10: Multiply: \(\frac{31200000\times 1207^{84}-31200000\times 1200^{84}}{1207^{84}\times 7}\) The present value for monthly payments is approximately $1,722,689.41. Therefore, the different payments that Cooley Landscaping could choose for the different payment plans are: - Annual payments: $140,121.52 - Semiannual payments: $283,933.53 - Quarterly payments: $571,660.82 - Monthly payments: $1,722,689.41 The payment for the loan at 7% interest for the next 7 years with annual payments is $140,121.52.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find Cooley Landscaping's payment for the loan with annual payments, we can use the formula for the present value of an annuity: \[ PV = P \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] where: - \( PV \) is the present value (\$26,000), - \( P \) is the payment, - \( r \) is the interest rate per period (0.07 for annual payments), - \( n \) is the total number of payments (7 years). Rearranging the formula to solve for \( P \): \[ P = \frac{PV \cdot r}{1 - (1 + r)^{-n}} \] Substituting in the values: \[ P = \frac{26000 \cdot 0.07}{1 - (1 + 0.07)^{-7}} \] Calculating the denominator: \[ 1 - (1.07)^{-7} \approx 1 - 0.6236 \approx 0.3764 \] Now calculating the payment: \[ P \approx \frac{1820}{0.3764} \approx 4836.65 \] Therefore, Cooley Landscaping's annual payment at \( 7\% \) interest for the next 7 years is approximately \( \$ 4,836.65 \). For semiannual, quarterly, and monthly payments, the value of \( r \) would change accordingly (dividing the annual interest by the number of periods per year), and \( n \) would also increase (multiplying years by the number of periods per year). Each payment plan can be calculated similarly using the present value annuity formula.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad