Pregunta
upstudy study bank question image url

We measured the flat area of 30 apartments and we have measured the following values in \( m^{2} \) : \( 82.6,57.3,70.4,65,48.4,103.8,73.6,43.5,66.1,93,52.6,70,84.2,55,81.3,61.5,75.1,34.8 \), \( 62.4,116,70.1,63.6,93,59.2,65.9,77.2,52.8,68.7,79.2,87.4 \). a) Create a table of grouped frequency distribution for the number of classes \( k=9 \). b) Construct a histogram of relative frequencies of the flat areas. c) From the specified values estimate the sample mean and the variance. d) From the middle values of the intervals and from their frequencies estimate the sample mean and the variance.

Ask by Bright Ward. in China
Jan 06,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Grouped Frequency Distribution:** | **Class Interval (m²)** | **Frequency** | |-------------------------|---------------| | 30 – <40 | 1 | | 40 – <50 | 2 | | 50 – <60 | 5 | | 60 – <70 | 7 | | 70 – <80 | 7 | | 80 – <90 | 4 | | 90 – <100 | 2 | | 100 – <110 | 1 | | 110 – <120 | 1 | | **Total** | **30** |

Solución

### Problem a) **Create a table of grouped frequency distribution for the number of classes \( k=9 \).** To create a grouped frequency distribution with 9 classes for the given data set, follow these steps: 1. **Determine the Range:** - **Minimum value (\( \text{Min} \))**: 34.8 - **Maximum value (\( \text{Max} \))**: 116 - **Range (\( R \))**: \( R = \text{Max} - \text{Min} = 116 - 34.8 = 81.2 \) 2. **Calculate Class Width:** - **Number of classes (\( k \))**: 9 - **Class Width (\( C \))**: \( C = \frac{R}{k} = \frac{81.2}{9} \approx 9.022 \) - **Rounded Class Width**: Typically, it's practical to round up to a convenient number. Here, we'll use **10** for simplicity. 3. **Establish Class Intervals:** - Starting from 30 (a convenient number below the minimum) to 120 to accommodate the maximum value. - **Class Intervals**: - 30 – <40 - 40 – <50 - 50 – <60 - 60 – <70 - 70 – <80 - 80 – <90 - 90 – <100 - 100 – <110 - 110 – <120 4. **Tally the Frequencies:** - Assign each data point to its respective class interval. 5. **Frequency Distribution Table:** | **Class Interval (m²)** | **Frequency** | |-------------------------|---------------| | 30 – <40 | 1 | | 40 – <50 | 2 | | 50 – <60 | 5 | | 60 – <70 | 7 | | 70 – <80 | 7 | | 80 – <90 | 4 | | 90 – <100 | 2 | | 100 – <110 | 1 | | 110 – <120 | 1 | | **Total** | **30** | 6. **Frequency Assignment Details:** - **30 – <40:** 34.8 - **40 – <50:** 43.5, 48.4 - **50 – <60:** 52.6, 52.8, 55, 57.3, 59.2 - **60 – <70:** 61.5, 62.4, 63.6, 65, 65.9, 66.1, 68.7 - **70 – <80:** 70, 70.1, 70.4, 73.6, 75.1, 77.2, 79.2 - **80 – <90:** 81.3, 82.6, 84.2, 87.4 - **90 – <100:** 93, 93 - **100 – <110:** 103.8 - **110 – <120:** 116 This table effectively groups the 30 apartment flat areas into 9 classes, making it easier to analyze the distribution of the data.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle your multi-part question, we'll begin by breaking down the tasks and providing you with insights on frequency distributions and statistical calculations. To create a grouped frequency distribution table with \( k=9 \), you first need to determine the range of your data points, which is the difference between the maximum and minimum values. Next, divide this range by the number of classes \( k \) to find the class width. Then, list out the classes, count how many observations fall into each class, and create the frequency table. Now, when dealing with histograms, especially for relative frequencies, you'll be plotting the frequency of observations in each class against the intervals. It’s all about visually interpreting the frequency distribution, so ensure each bar represents the relative frequency of each class. For the sample mean and variance calculations, you’ll first need to sum all the values and divide by the total number of observations for the mean. For variance, take the average of the squared differences from the Mean. As for using middle values, for grouped data, the middle value of each class (also known as the class mark) will be multiplied by the frequency of that class to estimate the mean, while the variance will involve using these class marks in a similar manner for calculations, ensuring you include the squared differences too. Have fun with your calculations! With the right approach, you'll get a solid glimpse into the distribution of apartment sizes.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad