Responder
**Concave Up Intervals:** \( (-\infty, -3) \) and \( (4, \infty) \)
**Concave Down Interval:** \( (-3, 4) \)
**Points of Inflection:**
- \( x = -3 \) with \( y = -\frac{215}{2} \)
- \( x = 4 \) with \( y = -\frac{389}{3} \)
Solución
To determine the concavity of the function \( f(x) = \frac{x^{4}}{6} - \frac{1}{3} x^{3} - 12 x^{2} + 9 x + 5 \), we will follow these steps:
1. **Find the first derivative \( f'(x) \)**.
2. **Find the second derivative \( f''(x) \)**.
3. **Determine the critical points of \( f''(x) \)**.
4. **Analyze the sign of \( f''(x) \) to find intervals of concavity**.
5. **Locate points of inflection where \( f''(x) = 0 \)**.
### Step 1: Find the first derivative \( f'(x) \)
The first derivative is calculated as follows:
\[
f'(x) = \frac{d}{dx}\left(\frac{x^{4}}{6} - \frac{1}{3} x^{3} - 12 x^{2} + 9 x + 5\right)
\]
### Step 2: Find the second derivative \( f''(x) \)
The second derivative is calculated as follows:
\[
f''(x) = \frac{d}{dx}(f'(x))
\]
### Step 3: Determine the critical points of \( f''(x) \)
We will set \( f''(x) = 0 \) and solve for \( x \).
### Step 4: Analyze the sign of \( f''(x) \)
We will test intervals around the critical points to determine where \( f''(x) \) is positive (concave up) and where it is negative (concave down).
### Step 5: Locate points of inflection
The points of inflection occur where \( f''(x) = 0 \) and the concavity changes.
Let's perform the calculations for the derivatives and find the necessary information.
First, I will calculate the first and second derivatives.
### Calculating the first and second derivatives
1. **First Derivative**:
\[
f'(x) = \frac{4}{6}x^{3} - \frac{3}{3}x^{2} - 24x + 9 = \frac{2}{3}x^{3} - x^{2} - 24x + 9
\]
2. **Second Derivative**:
\[
f''(x) = \frac{d}{dx}\left(\frac{2}{3}x^{3} - x^{2} - 24x + 9\right) = 2x^{2} - 2x - 24
\]
Now, let's set \( f''(x) = 0 \) and solve for \( x \):
\[
2x^{2} - 2x - 24 = 0
\]
Dividing the entire equation by 2:
\[
x^{2} - x - 12 = 0
\]
Now, we will solve this quadratic equation.
### Solving the quadratic equation
Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
Here, \( a = 1, b = -1, c = -12 \).
Let's calculate the roots.
\[
b^2 - 4ac = (-1)^2 - 4(1)(-12) = 1 + 48 = 49
\]
Now substituting into the quadratic formula:
\[
x = \frac{-(-1) \pm \sqrt{49}}{2(1)} = \frac{1 \pm 7}{2}
\]
Calculating the two roots:
1. \( x = \frac{8}{2} = 4 \)
2. \( x = \frac{-6}{2} = -3 \)
Now we have the critical points \( x = -3 \) and \( x = 4 \).
### Step 4: Analyze the sign of \( f''(x) \)
We will test the intervals \( (-\infty, -3) \), \( (-3, 4) \), and \( (4, \infty) \):
1. **For \( x < -3 \)** (e.g., \( x = -4 \)):
\[
f''(-4) = 2(-4)^{2} - 2(-4) - 24 = 32 + 8 - 24 = 16 \quad (\text{positive, concave up})
\]
2. **For \( -3 < x < 4 \)** (e.g., \( x = 0 \)):
\[
f''(0) = 2(0)^{2} - 2(0) - 24 = -24 \quad (\text{negative, concave down})
\]
3. **For \( x > 4 \)** (e.g., \( x = 5 \)):
\[
f''(5) = 2(5)^{2} - 2(5) - 24 = 50 - 10 - 24 = 16 \quad (\text{positive, concave up})
\]
### Conclusion on concavity
- **Concave Up**: \( (-\infty, -3) \cup (4, \infty) \)
- **Concave Down**: \( (-3, 4) \)
### Step 5: Locate points of inflection
The points of inflection occur at \( x = -3 \) and \( x = 4 \).
Now, we will find the corresponding \( y \)-values for these points:
1. For \( x = -3 \):
\[
f(-3) = \frac{(-3)^{4}}{6} - \frac{1}{3}(-3)^{3} - 12(-3)^{2} + 9(-3) + 5
\]
2. For \( x = 4 \):
\[
f(4) = \frac{(4)^{4}}{6} - \frac{1}{3}(4)^{3} - 12(4)^{2} + 9(4) + 5
\]
Let's calculate these values.
### Calculating \( f(-3) \) and \( f(4) \)
1. **Calculating \( f(-3) \)**:
\[
f(-3) = \frac{81}{6} + 9 - 108 - 27 + 5 = \frac{81}{6} + 9 - 108 - 27 + 5
\]
\[
= \frac{81}{6} + \frac{54}{6} - \frac{648}{6} - \frac{162}{6} + \frac{30}{6} = \
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución