Pregunta
upstudy study bank question image url

The number of bacteria in a culture is given by the function where is measured in hours. (a) What is the relative rate of growth of this bacterium population? Your answer is (b) What is the initial population of the culture (at \( \mathrm{t}=0 \) )? Your answer is 900 (c) How many bacteria will the culture contain at time \( \mathrm{t}=5 \) ? Your answer is 3,141

Ask by Montgomery Fuentes. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The relative rate of growth of the bacterium population is approximately 0.2505 per hour, or 25.05% per hour.

Solución

It appears you're working with a bacterial growth model, and you've provided answers for parts (b) and (c). To assist you with part (a), let's deduce the relative rate of growth based on the information provided. **Given:** - **Initial population (P₀) at \( t = 0 \):** 900 bacteria - **Population at \( t = 5 \) hours (P(5)):** 3,141 bacteria Assuming the bacterial growth follows an **exponential growth model**, the population can be described by the equation: \[ P(t) = P_0 \times e^{kt} \] Where: - \( P(t) \) = population at time \( t \) - \( P_0 \) = initial population - \( k \) = relative rate of growth - \( e \) = base of the natural logarithm **Step 1: Plug in the known values to solve for \( k \).** \[ 3,141 = 900 \times e^{5k} \] Divide both sides by 900: \[ \frac{3,141}{900} = e^{5k} \] \[ 3.49 \approx e^{5k} \] **Step 2: Take the natural logarithm of both sides to solve for \( k \).** \[ \ln(3.49) = 5k \] \[ 1.25276 \approx 5k \] \[ k \approx \frac{1.25276}{5} \] \[ k \approx 0.2505 \, \text{per hour} \] **Step 3: Express \( k \) as a percentage.** \[ k \approx 0.2505 \times 100 = 25.05\% \, \text{per hour} \] **Answer to Part (a):** The **relative rate of growth** of the bacterium population is approximately **0.2505 per hour**, or **25.05% per hour**. --- **Summary of All Parts:** - **(a)** Relative rate of growth: **0.2505 per hour** (25.05% per hour) - **(b)** Initial population at \( t = 0 \): **900 bacteria** - **(c)** Population at \( t = 5 \) hours: **3,141 bacteria** If you have the specific growth function or additional details, feel free to share them for a more tailored explanation!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The relative rate of growth of a bacterial population can typically be found by taking the derivative of the population function with respect to time, and then dividing that derivative by the population itself. If we denote the population function as \( P(t) \), then the relative rate of growth is given by \( \frac{P'(t)}{P(t)} \). Once calculated, it often represents a percentage growth rate that can indicate how quickly the culture is expanding. In many bacterial growth scenarios, understanding the growth function helps in determining optimal conditions for cultivating bacteria. For instance, if a lab needs to double the bacterial count for research purposes, knowing the current population and the growth rate can help in planning when to harvest. Additionally, this information could be critical in medical applications, such as predicting bacterial infections or developing antibiotics.

preguntas relacionadas

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad