Pregunta
upstudy study bank question image url

Given the following position function: (position is in ft , time is in sec ) \[ \mathrm{s}(\mathrm{t})=\frac{\sqrt{\mathrm{t}}}{\sqrt{\mathrm{t}+1}} \] Find the velocity at \( \mathrm{t}=3 \). \( \mathrm{v}(3)=[?] \frac{\mathrm{ft}}{\mathrm{sec}} \) Round your answer to the nearest thousandth.

Ask by Hart Summers. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The velocity at \( t = 3 \) seconds is approximately \( 0.036 \) feet per second.

Solución

We are given the position function   s(t) = √t / √(t + 1)          (with s in feet and t in seconds) and we wish to calculate the velocity at t = 3, where velocity is the derivative s′(t). Step 1. Rewrite s(t) as a product:   s(t) = t^(1/2) · (t + 1)^(–1/2) Step 2. Differentiate using the product rule:   s′(t) = [d/dt (t^(1/2))] · (t + 1)^(–1/2) + t^(1/2) · [d/dt ((t + 1)^(–1/2))] We compute each derivative separately: • d/dt (t^(1/2)) = (1/2) t^(–1/2) • d/dt ((t + 1)^(–1/2)) = (–1/2) (t + 1)^(–3/2) · (1)  (by the chain rule) Thus,   s′(t) = (1/2) t^(–1/2) (t + 1)^(–1/2) – (1/2) t^(1/2) (t + 1)^(–3/2) Step 3. Factor common terms: Notice both terms have a common factor of (1/2) and powers of t and (t + 1). Factor out 1/(2√t) and (t+1)^(–3/2):   s′(t) = 1/(2√t (t + 1)^(3/2)) [ (t + 1) – t ] Since (t + 1) − t = 1, we have   s′(t) = 1 / [2√t (t + 1)^(3/2)] Step 4. Substitute t = 3: For t = 3, first calculate:   √t = √3,   t + 1 = 4, so (t + 1)^(3/2) = 4^(3/2) = (√4)^3 = 2^3 = 8 Thus,   s′(3) = 1 / [2 · √3 · 8] = 1 / (16√3) Step 5. Compute the numerical value: Replace √3 with its approximate value 1.732:   s′(3) ≈ 1 / (16 × 1.732) = 1 / 27.712 ≈ 0.0361 Rounded to the nearest thousandth:   v(3) ≈ 0.036 ft/sec So the velocity at t = 3 is approximately 0.036 ft/sec.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the velocity at \( t = 3 \), we first need to calculate the derivative of the position function \( s(t) \). The velocity function \( v(t) \) is given by the derivative \( \frac{ds}{dt} \). The position function is: \[ s(t) = \frac{\sqrt{t}}{\sqrt{t+1}} \] To differentiate it, we can use the quotient rule: If \( u(t) = \sqrt{t} \) and \( v(t) = \sqrt{t+1} \), then: \[ s(t) = \frac{u(t)}{v(t)} \] The quotient rule states that: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \] Now, find \( u' \) and \( v' \): 1. \( u(t) = \sqrt{t} \) → \( u' = \frac{1}{2\sqrt{t}} \) 2. \( v(t) = \sqrt{t+1} \) → \( v' = \frac{1}{2\sqrt{t+1}} \) Now apply the quotient rule: \[ v(t) = \frac{\frac{1}{2\sqrt{t}} \sqrt{t+1} - \sqrt{t} \frac{1}{2\sqrt{t+1}}}{t+1} \] Simplifying gives us: \[ v(t) = \frac{\sqrt{t+1}}{2\sqrt{t}(t+1)} - \frac{\sqrt{t}}{2\sqrt{t+1}(t+1)} \] Bringing them under a common denominator: \[ v(t) = \frac{\sqrt{t+1}^2 - \sqrt{t}^2}{2\sqrt{t}\sqrt{t+1}(t+1)} \] Now substituting back in: \[ v(t) = \frac{(t+1) - t}{2\sqrt{t}\sqrt{t+1}(t+1)} = \frac{1}{2\sqrt{t}\sqrt{t+1}(t+1)} \] Now we can substitute \( t = 3 \): \[ v(3) = \frac{1}{2\sqrt{3}\sqrt{4}(4)} = \frac{1}{2\sqrt{3}\cdot 2 \cdot 4} = \frac{1}{16\sqrt{3}} \] Now to approximate \( \frac{1}{16\sqrt{3}} \): Calculating \( \sqrt{3} \) approximately as \( 1.732 \): \[ v(3) \approx \frac{1}{16 \cdot 1.732} \approx \frac{1}{27.712} \approx 0.0361 \] Rounding to the nearest thousandth gives us: \[ v(3) \approx 0.036 \text{ ft/sec} \] So, the velocity at \( t = 3 \) is \( \frac{0.036}{\text{ft/sec}} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad