An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in Texas. He believes that the mean income is \( \$ 21.5 \), and the variance is known to be \( \$ 30.25 \). How large of a sample would be required in order to estimate the mean per capita income at the \( 98 \% \) level of confidence with an error of at most \( \$ 0.27 \) ? Round your answer up to the next integer.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To determine the sample size required to estimate the mean per capita income at a \( 98\% \) confidence level with a specified error, you can use the formula for sample size in estimating a population mean: \[ n = \left( \frac{Z \cdot \sigma}{E} \right)^2 \] Where: - \( Z \) is the Z-score corresponding to the desired confidence level, - \( \sigma \) is the standard deviation (the square root of variance), - \( E \) is the margin of error. 1. For a \( 98\% \) confidence level, the Z-score is approximately \( 2.33 \). 2. Given variance \( \sigma^2 = 30.25 \), the standard deviation \( \sigma = \sqrt{30.25} \approx 5.5 \). 3. The margin of error \( E = 0.27 \). Now, plug these values into the sample size formula: \[ n = \left( \frac{2.33 \cdot 5.5}{0.27} \right)^2 \] Calculating this gives: \[ n = \left( \frac{12.815}{0.27} \right)^2 \approx (47.52)^2 \approx 2255.23 \] Finally, rounding up to the next integer, the required sample size is \( n = 2256 \). So, you would need a sample of at least 2256 people to estimate the mean per capita income with the desired confidence and error margin.
